KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

KABARAK HIGH SCHOOL
CHEMISTRY
PAPER 2
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

KABARAK HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016 QUESTION PAPER 2 MARKING SCHEME

(b) (i)
$$38g + 1$$
 evidence from graph (ii) $175 g + 1$

(c)
$$75^{\circ} C \longrightarrow 155g$$

 $20^{\circ}C \longrightarrow -32g$
123g

(d) Curve decreasing

- (e) (i) A & C; forms lather after boiling Note: both A & C must be given
 - (ii) -Provides calcium for strengthening bones
 - Forms a layer of carbonate in lead pipes

C = C C H

- (b) Bubbles of colourless gas given off.
- (c) I Compounds with similar chemical properties and shows gradual change in Physical properties.
 - II (i) Add to both Na ₂CO₃ solid no reaction in butan-2-ol
 - (ii) Add acidified $KMnO_4$ to Butanol, purple colour disappears, but no observable Change butanoic acid
 - or any correct test
 - both observations must be given

(d)
$$2C_2H_{6(g)} + 7O_{2(g)} \longrightarrow 4CO_{2(g)} + 6H_2O_{(I)}$$

(e) (i) reagents – H2 (g) √

conditions − Ni catalyst, V 150°C-250°C Note: both must be given

- (ii) Manufacture of solid fats
- (iii) C- polyethene

Accept formula

3 (a) gas X-chlorine

- (c) $16Hcl_{(I)} + 2KMnO_{7(s)} \longrightarrow 5Cl_{2(g)} + 2Kcl_{(aq)} + 2Mncl_{2(aq)} + 8H_2O_{(I)}$
- (d) It increasesv; water elements arev discharged at the electrodes i.e. H₂ and O₂

(e) Anode
$$\longrightarrow$$
 4 OH⁺_(aq) \longrightarrow 2H₂O_(I) + O_{2(g)} + 4eV

Cathode \longrightarrow 4H⁺_(aq) +4e \longrightarrow 2H_{2(g)} V

Ratio 2:1 - equations must be balance (scores 2 marks) -ratios along (no marks)

(f) - Electroplating

- Extraction of metals
- Purification of copper
- (g) The corrosion of articles made of aluminum prevented by reinforcing their aluminium oxide coating during electrolysis of dilute <u>sulphuric acid</u> and aluminium article used as the anode
- 4. (a) P oxygen
 - (b) $2Pb(NO_3)_{2(s)} \longrightarrow 4NO_{2(g)} + O_{2g} + 2PbO_{(s)}$
 - (c) cracking sound
 - Brown fumes
 - (d) Liquifies quickly
 - (e) They decompose forming water crystallisation
 - (f) $2NO_{2(g)} + H_2O_{(I)} \longrightarrow HNO_{2(aq)} + HNO_{3(aq)}$
 - (g) Burning Mg splits \lor NO₂ into nitrogen \lor 2 and oxygen \lor 2.
 - (i) White solid MgO
 - (ii) Gas $-N_2$
- 5. (a) E
 - (b) Above F to the left of E
 - (c) PG_3
 - (d) Halogens
 - (e) It decreases \(\)_ down the group with increase in energy levels \(\)
 - (f) A & water very vigorous group 1
 - C & water vigorous group II
 - (g) Basic oxide
 - (h) manufacture of H₂SO₄
 - manufacture of drugs
 - Vulcanization of rubber
- 6 (a) Down's cell
 - (b) To lower melting pt of sodium chloride from 800°C \longrightarrow 600°C
 - (c) $2Cl_{(l)} \longrightarrow Cl_{2(g)} + 2e correct state symbols$
 - (d) Liquid calciumv; it crystallisesv first when it cools

(e)
$$2Na_{(s)} + 2H_2O(I) \longrightarrow 2NaOH_{(aq)} + H_{2(g)} V$$

No. of moles = $1.15 V$ /₂
23
=0.05

$$H_2$$
 moles = 0.05 $\sqrt{2}$ dividing by 2
2
=0.025

Volume = $0.025 \times 22400 \text{ } \%$ multiplying = $560 \text{ cm}^3 \text{ } \%$

- f) (i) Cl₂ gas is poisonous
 - (ii) Sodium vapour for street lamps
 - Manufacture of NaCN for extraction of gold (sodium cyanide)
 - alloy of Na & K as a nuclear reactant coolant
 - Alloy with lead for anti-knock

Any 2

- 7 (a) (i) A stable electron configuration of 2
 - (ii) Intermolecular force in which positive atom of hydrogen is joined to a negative

atom of another molecule

- (b) (i) Heating
 - (ii) $R Ca(OH)_2$ Y -CO_{2(g)}
 - CaO_(s) + H₂O_(I) Ca(OH)_{2(aq)} (iii)
 - (c) 0.1MHCl → ionises completely
 - 0.1M ethanoic → ionises partially
 - d) (i) Green colour turns black
 - (ii) $CuCO_{3(s)} \longrightarrow CuO_{(s)} + CO_{2(g)}$

× ×