KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

BAHATI GIRLS HIGH SCHOOL
CHEMISTRY
PAPER 2
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

BAHATI GIRLS HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016 QUESTION PAPER 2

MARKING SCHEME

1.

- (a) AV^1 , D have the same number of valence electrons V^1 (belong to the same group 2)
- (b) $B_2OV^{1/2}$
- (c) $BV^{1/2}$, has more $V^{1/2}$ than 3 valence electrons
- (d) (i) Strongest reducing agent is CV^{1/2}. It's the most electropositive or has the least electrostate/electromagnetic forces hence has the highest abilityV^{1/2} to lose its valence electrons
 - (ii) Oxidising agent is $BV^{1/2}$. Has the highest ability to form negatively charged ion. Highest ability $V^{1/2}$ to gain electrons up the valence energy level
- (e) Ionic radius of D is less than of C due D has highest electrostatic force or V^1 greater nuclear charge, hence the valence energy level is greatly attracted in D than in C after forming its ion inwardly contracting the D valence energy level.
- (f) Form ion by gaining electrons the , the gained electrons are being repelled by the others in the inner energy levels and even in the same energy level. Hence making the ionic radius to expand outwardlyV¹ due to repulsive forces. Hence the atomic radius being less than its ionic radius.
- (g) (i) A and D alkali earth metalsv^{1/2}reject groups II or 2
 - (ii) B halogens reject group 7
 - (iii) C alkali metals V^{1/2} reject group Ilor 2
- (h) B (chlorine)
 - Manufacture of HCl acid
 - Disinfectant√^{1/2}
 - Water treatment
 - Plastic manufacture V^{1/2}
 - Manufacture of pesticides
 - Manufacture of drugs

Any two correct uses, any additional wrong use cancels the correct

2.

- (a) $Y = hydrogen V^{1/2} gas/H_2$
 - $X = oxygen V^{1/2}gas/O_2$
- (b) $Y = 2H^{+}_{(aq)} + 2e \longrightarrow H_{2(g)} V^{1}$ correct state symbols wrong state symbols penalise $V^{1/2}$ not balanced zero

 $X = 4OH_{(aq)} \longrightarrow 2H_2O_{(l)} + O_{2(g)} + 4eV^1$ accept convectional way. Reject

- $4OH_{(aq)}^{-}$ $2H_2O_{(l)} + O_{2(g)}$ (non convectional way)
- (c) Oxygen X used in
 - Weldingv^{1/2}
 - Rocket fuelv^{1/2}
 - Respiration aid in hospitals/deep sea diving.
 Any correct 2 uses, any additional wrong use cancels the correct one
- (d) No free ions for the HCl is a molecular compound does not conduct electricity
- (e) Y $4H^{+}_{(aq)} + 4e \longrightarrow 2H_{2(g)} V^{1/2}$ X $4OH^{-}_{(aq)} \longrightarrow 2H_{2}O_{(I)} + O_{2(g)} + 4eV^{1/2}$

Mole ratio of product formation= 2vol of H₂:1vol of O₂V¹

- 3. a) BauxiteV^{1/2} or correct formular
 - b) Iron(iii)oxide/silicon(iv)oxide/dioxide/silicav^{1/2}

NB: x = Place where electrolyte is put

- d) (i) it is uneconomical/expensive because a lot of energy is required to produce this high temperaturev¹
 - (ii) Addition of cryolite
 - (iii) The melting pointV¹ is below 800⁰C
- e) Quantity of electricity:

```
=40000 x 60 x 60 coulombsV<sup>1/2</sup>
```

 $3 \times 96500 \text{V}^{1/2}$ coulombs produce 27g of aluminium

∴ 40,000 x 60 x 60 coloumbs produce

```
=40000 x 60 x 60 x 27v^{1/2}
3 x 96500 v^{1/2} x 1000
=13.43kgv^{1/2}
```

4.

- (a) Mg(s) + 2HCl → MgCl₂(aq) + H_{2(g)}
 (1mk if correct in balanced correct symbols, ½ mk if wrong symbols or missing symbols. 0mk if not balanced)
- (b) (i) 298 ±0.5
 - (ii) $30 \text{cm}^3 \text{V}^{1/2}$ Of 2M HCl was used to completely react with 0.6g of magnesium from that volume of HCl , $\text{V}^{1/2}$ any extra volume of acid no change in volume of gas
- (c) $0.6 \text{mg} \rightarrow 600 \text{cm}^3 \text{ of hydrogen gas}$

24000cm³

$$\frac{24000cm^{3}}{600cm^{3}}$$
= 24g of magnesium. Hence R.A.M of Mg is 24

- (d) (i) 0.6g magnesium ribbon is used less rate of reaction for ribbon magnesium offers smaller surface areav¹ hence less rate of reaction, hence small rate of bubbling due to lesser production of hydrogen gas per minute
 - (ii) 3M HCl will produce higher bubbling rate due to high concentration of acid particles or molecules v¹ hence higher rate of reaction
 - (iii) when 0.6g of magnesium powder is used with 2M HCl, at a lower temperature there is decreased v¹ rate of bubbling due to decreased kinetic energy reducing rate of collision
- 5. a) (i) cracking $V^{1/2}$
 - (ii) High pressure, $V^{1/2}$ high temperature $V^{1/2}$

Any additional wrong conditions cancels the correct i.e. penalise ½ mk for every wrong point

- b) (i)Reduces pollution or environmental effect of lead compoundsV¹. reduces cancer effect on pregnant mothers when they inhale lead(ii)oxide gas
 - (ii) catalytic converters ensures combustion in the petrol engine $V^{1/2}$ is complete, produces non poisonous compounds like NO₂, CO₂ instead of $V^{1/2}$ NO, CO which are deadly poisonous
 - (iii) to avoid or prevent production of lead (ii) oxide dusts which are deadly poisonous V when inhaled
 - (iv)- Carbon (ii) oxide or COV^{1/2}
 - Nitrogen(ii)oxide or NO√1/2
 - Nitrogen (iv) oxide or NO₂√^{1/2}
 - Lead (ii) oxide or PBO√^{1/2}

```
(a) 65 - 29 = 36 \sqrt{1/2}
```

(c) $_{29}^{65}$ Y has the least % of abundance of 30.9 $v^{1/2}$

(d) R.A.M =
$$(63 \times 69.1) \sqrt{1/2} + (65 \times 30.9)$$

 $100\sqrt{1/2}$

$$= \frac{4353.3 + 2008.5}{100}$$
$$= \frac{6361.8}{100} v^{1/2}$$
$$= 63.618 v^{1/2}$$

(e) Nucleon particles

Particles present in the i.e. protons neutrons $v^{1/2}$ e.t.c

$$\frac{63}{29}$$
Y \longrightarrow 63 – 29 = 34 neutrons $\sqrt[3]{2}$

7.

(a) Under the same conditions of temperature and pressure the rate of diffusion of a gas is inversely proportional $v^{1/2}$ to the square root of its density

(b)
$$\frac{TSO_2}{T_2} = \frac{\frac{1}{R.MM SO_2}}{\frac{R.MM O_2}{R.MM O_2}}$$

R.MM
$$SO_2 = 64\sqrt{1/2}$$

R.MM
$$O_2 = 32$$

$$\frac{TSO_2}{50sec} = \frac{64}{32} \sqrt{1}$$
$$= TSO_2$$

$$TSO_2 = 70.7 \text{ secV}^{1/2}$$

8.

(a) $ZV^{1/2}$ is copper metal, is the reference electrodev^{1/2} whose standard electrode is 0volts

(b) $XV^{1/2}$ and Y metals $V^{1/2}$

E.m.f =
$$E^{\emptyset}$$
 reduced – E^{\emptyset} oxidised
= $E^{\emptyset}_{L} - E^{\emptyset}x$
= $1.16 - (-1.10) V^{1/2}$
= $2.26 VV^{1/2}$

(c) $XI(s)/X^{2+}(aq)//L^{2+}(aq)/L(s) v^1$

(d) $L(s)/L^{2+}(aq)//X^{2+}(aq)/X(s) \sqrt{1/2}$

E.m.f =
$$E^{\emptyset}$$
 reduced – E^{\emptyset} oxidised
= $E^{\emptyset} x - E^{\emptyset}_{L}$

$$= -1.10 - 1.16 \text{ V}^{1} = -2.26 \text{VV}^{1}$$

9.

(a)
$$56g \longrightarrow V^{1/2}14g$$
 of solid

Water

100g \longrightarrow 2

$$100g \xrightarrow{100g} ?$$

$$\frac{100g}{56g} \times 14g V^1$$

=25g
$$V^{1/2}$$
 of solid in 100g of solution

(b) (i)
$$\Delta H = -128KJ$$

$$\frac{1}{2} \times -128 \text{KJV}^{1/2}$$
 \rightarrow $\Delta H = -64 \text{KJ/molV}^{1/2}$

$$\% \text{ x -128KJV}^{1/2} \longrightarrow \Delta H = -64\text{KJ/molV}^{1/2}$$
(ii) If $H_{2(g)} + \% Br_{2(g)} \longrightarrow 2HBr_{(g)} \Delta H = -128\text{KJ}$
Required answer $\% H_{2(g)} + \% Br_{2(g)} \bigvee^{1/2} \longrightarrow HBr_{(g)}$

Required answer ½
$$H_{2(g)} + ½ Br_{2(g)} V^{1/2} \longrightarrow HBr_{(g)} \Delta H = -108KJ$$

 $H_{2(g)} + Cl_{2(g)}$ \longrightarrow $2HCl_{(g)}$ $\Delta H=-108kj/mol$ (i) Increase in pressure **no effect** $V^{1/2}$ since there is **no side** favoured by decrease in volume thus equilibrium position not affected

(ii) Increase in temperature favours the formation of more H_2 , $Cl_2V^{1/2}$ gas since formation of HCl is exothermic. Hence the position of the equilibrium goes towards formation V^{1/2} of Cl₂, Cl₂.

(iii) Removal of chlorine gas causes decrease in concentration of Chlorine gas hence more $HClv^{1/2}$ decomposes to replace the concentration of chlorine gas hence the equilibrium position shifts towards the formation of more hydrogen and chlorine gas $v^{1/2}$

10. Let the initial sample be X

(a)

$$X \xrightarrow{t_1} \frac{x}{2} \xrightarrow{t_1} \frac{x}{4} \xrightarrow{t_1} \frac{x}{8} \xrightarrow{t_1} \frac{x}{16}$$

.t1=half-life= 25days
 $\frac{1}{16} \xrightarrow{50gV^{1/2}}$
 $\frac{16}{1} \xrightarrow{7} ?$
 $=\frac{16}{1} \times 50V^{1/2}$
 $=800gV^{1/2}$

(b) (i) reagent used in step 1, $excess V^{1/2}$ hydrogen gas or $H_{2(g)}$)

- (ii) Step II : **Little**V^{1/2} hydrogen gas
- (iii) Step III: Hydrogenv^{1/2} chloride gas (HCl)
- (iv) Step IV: sodium hydroxide/soda lime
- (v) Step V: $CH_2 = CH_2 V^{1/2}$ Ethene monomers (c) L – Carbon (iv) oxide or $CO_2 V^{1/2}$
- P water or $H_2Ov^{1/2}$

Q – carbon (ii) oxide or $COV^{1/2}$

R – ethanol $v^{1/2}$

K – polythene or polyethene polymer $(-CH_2 - CH_2 -)_n V^{1/2}$

N – chloroethane or 1-chloroethanev^{1/2}

(d) Structures for

Accept any of the above structures

(e) Continued use of polythene/polyethene it keeps on accumulating in the environment since its non-biodegradablev^{1/2} i.e. not decomposed by decaying bacteria. It disfigures the environment, when disposed by burning produces a very poisonous gas.

Any of these effects or any other that is correct

11.

(a) Concentration = moles of solute

Vol. In litres
$$= \frac{0.1M}{0.1} = 1M$$

