KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

ALLIANCE BOYS HIGH SCHOOL
CHEMISTRY
PAPER 2
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

ALLIANCE BOYS HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016

QUESTION PAPER 2

No	Answer (s)	marks	Remarks
1	(a) (i) 2.8.4 V1mk	1	
	(ii)2. 8. 8 √1mk	1	
	(b) N ₂ M ₃		
	(c) P reacts faster with chlorine than Nv1mk		
	Because P is larger in size V1mk or its electrons are more		
	shielded from the positive nucleus V1mk	2	
	(d) N 2. 8. 2, O 2. 6	1	
		2 ½	
		2.1/	
	√½mk	2 ½	
	- correct number of outermost electrons $\sqrt{2}$ mk - transfer of electrons $\sqrt{2}$ mk	2	
	- charges outermost electrons V½mk	2	
	(e) Metal Q √½mk		
	Reason: has largest atomic radius $\sqrt[4]{2}$ mk therefore loses		
	electrons most readilyV½mk metal M V½mk A transition	1	
	metal v½mk		
	(f) Physical: their freshly cut surface are shiny	2	
	Chemical – displace it from cold water / tarnish by air		
	(h) (i) $(75 \times 35 + 25 \times 37) \vee 1 \text{mk} = 35.5 \forall 1 \text{mk}$		
	100	1	Wrong substitution
	(ii) Because existence of isotopes which differ in their		wrong answer
	relative abundance √½mk		
	(g) Transition metal √1mk		
		16	
2	(a) 1- Sulphur / oxygen√½mk {if 1 st is oxygen 2 nd Sulphur) 2. Sulphur / oxygen √½mk		
	4- Oleum V½mk	2	
	6- Nitrogen √½mk	3	
	9 – Ammonium sulphate V½mk		
	8 – Nitrogen (IV) oxide ½mk		
	(b) – Temperature 450- 500°CV½mk	41/	
	- Pressure of about 2-3 atoms v½mk	1½	
	- Catalyst – Vanadium (V) oxide (V ₂ O ₅)		
	(c) 9:- $2NH_{3(g)} + H_2SO_{4(l)} \rightarrow (NH_4)_2SO_{4(s)}$		
	- Balanced with states v1mk	1	
	- missing states √½mk	1	
	- unbalanced 0mk		
	7:- $NH_{3(g)}$ + $5O_{2(g)} \xrightarrow{900} 4NO_{(g)} + 6H_2O_{(I)}$		
	- As in (c) above √1mk	2	
	- Conditions shown correctly V1mk		
	Soliditions shown correctly villing	<u> </u>	

	(d) Conc. H ₂ SO ₄ acts as a oxidizing agent √½mk, but dil.		
	H_2SO_4 is not instead reaction will proceed for a shorter time and stops $V\%$ mk due to the formation of an insoluble	1½	
	sulphate which stops further reaction √½mk	_,_	
		9	
3	(a) (i) Dissolve excess Lead (II) oxide in warm HNO ₃ in a Beaker √1mk		
	- Filter off excess Lead (II) oxide √½mk		
	- Heat the filtrate to evaporate most of the water √½mk		
	- Cool the contents to let the crystals form 1½mk		Accort any other
	- Dry the crystal between the filter papers $\sqrt[4]{2}$ mk (ii) PbO _(s) + 2HNO _{3(aq) hea} Pb(NO ₃) _{2(aq)} + H ₂ O _(l)	3	Accept any other method of drying
	- Conditions as in (c) above		
	(b) (i) Clear droplets $\sqrt[4]{2}$ mk on cooler part of test tube and	4	
	brown gas observed √½mk - A colourless gas √½mk which relights a glowing splint also	1	
	formed V½mk		
	- The solid residue which is red when hot 1% mk and turns to		
	yellow on cooling V½mk is formed.	3	
	(ii) $2Pb(NO_3)_{(s)} \rightarrow 2PbO_{(s)} + O_2 + 4NO_{2(g)}$ (c)(i) White ppt $\sqrt[4]{2}$ mk formed which is insoluble in excess.	1	
	Explanation; OH⁻ in the alkali react with Pb²+ ions √½mk to		Conditions as a(ii)
	form Pb(OH) _S V½mk which is insoluble		above
	(ii) $Pb^{2+}_{(aq)} + 2OH_{(aq)} \rightarrow Pb(OH)_{2(s)}$	2	
	(d) <u>(0.1 x 300)</u> √½mk = 0.03mol √½mk 2	1	
	Moles of PbI ₂ formed = (1×0.03) $\sqrt{2}$ mk		
	2 = 0.015		
	Pbl ₂ = 207 + 254 ½mk = 461	3	
	mass = 0.015 x 461 = 6.915 √½mk	14	
4	(a) (i) 2,3 − dimethyl-pentane V1mk		
	(ii) 2-methyl prop-1-ene or 2-methylpropene √1mk		
	(b) (i) Cracking V1mk		
	(ii) $C_2H_{4(g)} + Cl_{2(g)} \rightarrow C_2H_4Cl_2 V1mk$ 1,2 – dichloro-ethane $V1mk$		
	(c) (i) 1, 1, 2, 2 − tetrabromo ethane V1mk		
	(ii) Br Br		
	_		
	[]		
	H Č Č H		
	(iii) Reagents – Hydrogen of nickel catalyst √½mk Type of reaction- Hydrogenation/addition √½mk		
	(iv) Polymer is a big molecule formed when many small		
	monomers combine V1mk		
	(v) HCl V1mk (d) (i) I − Conc. sulphuric (VI) acid		
	II- Ethanol √½mk		

	Gas iar Fthane gas		
	(ii) $C_2H_5OH_{(I)}$ $Conc. H_2SO_{C_2}H_{4(g)} + H_2O_{(I)} \sqrt{1}mk$		
5	(a) Bauxite √½mk (b) – Iron (II) oxide	½ 1	Any one
	- Silicon (IV) oxide		,
	Arriode+ve of Anode 1/2	1 ½	Accept if polarities labeled
	Cathode √½ Molten	1 1 1	Charges in ion should be correct Any 2
	electrolyte √½ (d) (i) Aluminium oxide is mixed with molten cryolite	3 2	
	(Na ₃ AlF ₆) V ½mk (ii) Its boiling point is below 800°C V 1mk (e) Al ³⁺ (ag) + 3e ⁻ Al(s) V ½mk		
	(f) $Q = It = 40,000 \times 60 \times 60 = 144,000,000C$		
	3F produce 1mol. A1		
	3 x 96500C v1mk produce 1 mol Al. = 27g		
	<u>144000000 x 27</u> √½mk = 13.43Kg √½mk 1000 x 3 x 96500		
	(g) – Food packaging material		
	- Head lamp reflectors		
	-Overhead electrical cables		
	-Alloys of al is used in construction of air crafts and ship		
	bodies		
		11	
6	(a) (i) Large unstable nuclide splits $\sqrt[4]{2}$ mk up to give smaller $\sqrt[4]{2}$ mk more stable nuclides	1	
	(ii) smaller and lighter nuclides combine √½mk to form heavy	_	Accept if smaller is
	nuclide √½mk	1	used alone
	(b) (i) 8.1 from the graph (½ x 400 = 200) (ii) ↑	1	
	√1		Should not touch the axis at all
	(iii) The spont f the radioactive		avis at all
	nuclides $\sqrt{1m_K}$	1	
	(iv) Reading mass after 16.2days from graph = 100g $^{100}/_{400} = \frac{1}{4}$	1 1	Accept if symbol alone
	(c) (i) Beta $\sqrt{1}$ Beta $\sqrt{1}$	1	is stated
	Paper $_{\sqrt{1}}$ metal foil		
	(d) step I: Beta particles (β)√1mk		

Step ₁₀ II: gamma rays (γ)V1mk		
(ii) $Pb \rightarrow He + Pb$		
	2	
$(e) = (\frac{1}{2})^n$	2	Any two
$6.25 = (\%)^n \times 5$		
$(\%)^{n} = 6.25 = 0.125$		
50		
n = log 0.125 = 3 V mk		
log 0.5		
45.3 ÷5 √½mk = 15days √½mk		
(f) – can cause cancer		
- Causes biological damage to human tissues		
``-Cause somatic and genetic mutation in living things		
-Causes physiological and biological disorders in living cells		
	16	