KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

STRATHMORE HIGH SCHOOL
CHEMISTRY
PAPER 1
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

STRATHMORE SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016 **QUESTION PAPER 1**

MARKING SCHEME

- Place the mixture in a beaker and cover the beaker with a watch glass containing cold water
 - Heat √½ the beaker gently. NH₄Cl sublimes √½leaving the mixture of sodium chloride and AgCl in the beaker. NH₄Cl deposits on watch glass.
 - Allow to cool then add water V1
 - Stir to dissolve NaCl
 - Filter $\sqrt{3}$ the mixture. Residue is AgCl, filtrate is NaCl_(aq) solution.
 - EvaporateV½ filtrate to obtain NaCl crystals.
- 2. (a) U, T, S, R, Q, P√1 Increasing atomic radius 1
 - (b) Both have metals/both react by losing electrons ٧1
- 3. (a) $Y - NO_3$ (b) Nitrogen (IV) oxide
- (a) (i) 2-methylprop-1-ene 4. (ii) ii) (i) CH₃CH₂CHCH₃ √½ H (b) Pent-2-ene √½
 - (ii) Addition reaction 1
- (a) (i) K √½ 5. (ii) J√ ½ (b) There are no H⁺ ions ٧1
 - (c) L is a better conductor than J because L is a stronger acid than J. 11/2
- 6. When solid sulphur is heated it melts into a liquid containing S8 V1rings which can flow easily. On further heating, the S8 rings break upv1 to form long chains which entanglev1 and cannot flow easily.
- 7. $RSO_2 = IMO_2$ MSO₂

= 0.7071
$$\sqrt{1}$$

RSO₂ = 0.7071 x 0.625 = 0.4419cm³/sec
100cm³ = ?
= $\frac{100 \text{cm}^3 \text{ x 1sec}}{0.4419 \text{cm}^3} \sqrt{1}$ = 226.3 seconds $\sqrt{1}$

- 8. ΔH_{soln} . = 250 x 4.2 x 1.5 = 1575J $\sqrt{2}$ Moles of NH₄NO₃ = $\sqrt{5}$ /₈₀ = 0.0625moles 0.0625moels = 1575J 1mole = ? = 1 x 1575J $\sqrt{1}$ 0.0625 = +25200Jmole⁻¹
- 9. (a) H X O X H
 - (b) It has weak van der waals forces 1½ between molecules which require little energy to overcome. 1½
- 10. (a)
 - (b) 30seconds √1
 - (c) $^{120}/_{30}$ $^{120}/_{30}$ $^{120}/_{30}$ $^{120}/_{30}$ $^{120}/_{30}$
- 11. $Q = It = 0.5 \times 1930 = 965CV1$ $965C \ 0. \cong 44g$ $? \cong 88g$ $= 88 \times 9965 = 19300CV1$ 0.44Charge on P = 19300 = +2V1965000
- 12. Moles of Fe = 320000000= $2000\ 000$ moles $\sqrt{2}$ Mole ratio = 1:2 Moles of Fe = $2000\ 000\ x\ 2\ \sqrt{2}$ = $4000\ 000$ moles Mass of Fe = $4000\ 000\ x\ 56$ $\sqrt{2}$ $1000\ 000$ = 224Kg $\sqrt{2}$
- 13. (a) Its solubility decreases with increase in temperature V1
 - (b) $40g \rightarrow 100g$ water →? 65g water = 65×40 $\sqrt{1}$ = 26g of solute $\sqrt{1}$ 100
- 14. (a) Step I Beta particle 11/2 Step II alpha particle 11/2
 - (b) 214 210 4 10 4 He
 - (c) In detecting leakages in oil pipelines $\sqrt{1}$
- $15. \qquad \text{Na}_2\text{CO}_{3(aq)} + \text{H}_2\text{SO}_{4(aq)} \rightarrow \text{Na}_2\text{SO}_{4(aq)} + \text{H}_2\text{O}_{(I)} + \text{CO}_{2(g)}$

Moles of acid used = $\underline{25 \times 0.1} = 0.0025$ moels $\sqrt{1}$ 1000Mole ratio acid: base = 1:1

Moles of $Na_2CO_3 = 0.0025$ moles

Concentration = $0.0025 \times 1000 \sqrt{1/2}$

20

= 0.125 moles/dm³ $\sqrt{1}$

Unbalanced - Omks

- 16. (a) To remove air initially present in apparatus. V1

 No symbols ½ mks
 - (b) $3Fe_{(s)} + 4H_2O_{(g)} \rightarrow Fe_3O_{4(s)} + 4H_{2(s)} \sqrt{1}$
 - (c) By upward delivery V1
- 17. Add PbO $\sqrt{2}$ a little at a time to dilute HNO_{3(aq)} while stirring until no more dissolves.
 - Filter off excess PbO V1

Filtrate is Pb(NO₃)₂ solution. $\sqrt{2}$

Add NaCl_(aq) soln. to the filtrate. $\sqrt{2}$

A white ppt. of PbCl₂ forms. $\sqrt{2}$

Filter wash the PbCl₂ residue and dry 11/2

- 18. (a) Protect it from oxygen V1
 - (b) Zinc is prefentially oxidized 1

19. (a)
$$P_2 = P_1 V_1 T_2 = 1 \times 2500 \times 300 \text{V}1$$

 $T_1 V_2 = 310 \times 5000$

= 4.38atmv1

- 20. (a) Vanadium (V) oxide $\sqrt{1}$
 - (b) $2SO_{2(s)} + O_{2(g)} \rightarrow 2SO_{3(g)} \sqrt{1}$
 - (c) Manufacture of drugs, explosives, Lead/acid accumulators (any one)
- 21. (a) Polychloroethene

(b)
$$H - C = C - H$$

- 22. Cannot be stored 1 Q is more reactive, V1 hence goes into solution
- 23. (a) Deliquescence √1
 - (b) Drying of gases
- 24. In methylbenzane, there are nov1 H^+ ions in water, H^+ ions are present $\sqrt{1}$
- 25. (a) Heating curves $\sqrt{2}$
 - (b) Solid N; does not sharp meting point.
- 26. (a) Hydrogen √½
 - (b) Testing for $CO_{2(g)}$
 - (c) Reacts with CO_{2(g)} to form CaCO_{3(s)}
- 27. (a) Name: Copper pyrites Formula CuFeS₂
 - (b) Mixing with water $\sqrt{2}$ and oil, then blowing $\sqrt{2}$ with air. Separates into two layers. Lower $\sqrt{2}$

layer contains $\sqrt{2}$ mud. Upper layer contains pure ore.

- 28. (a) $2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$ $\sqrt{1}$
 - (b) 2vols. \cong 40cm³

1vol.
$$\cong$$
 20cm³

$$2CO_{(s)} + O_{2(g)} \rightarrow 2CO_{2(g)}$$

Vol. of
$$CO_2 = 40 \text{cm}^3$$

Vol. unreacted of $O_2 = 40\text{-}20 = 20 \text{cm}^3$

29. (a) Water

100

- (b) Black CuO changes to brown
- (c) $3CuO_{(s)} + 2NH_{3(g)} \rightarrow 3Cu_{(s)} + N_{2(g)} + 3H_2O_{(I)}$ unbalanced equation 0mk no state symbols ½ mk

30.
$$\frac{(0.34 \times 36) + (0.06 \times 38) + (99.6 \times 40)}{100} \sqrt{1}$$

$$= \frac{12.24 + 2.28 + 3984}{100}$$

$$= \frac{3998.52}{100} = 39.9852\sqrt{1}$$