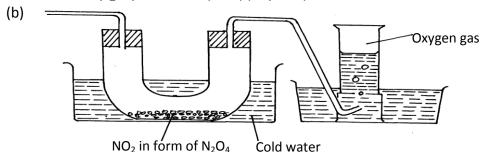
KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

SACHO HIGH SCHOOL
CHEMISTRY
PAPER 1
MARKING SCHEME

SCHOOLS NET KENYA


Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

SACHO HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016

QUESTION PAPER 1

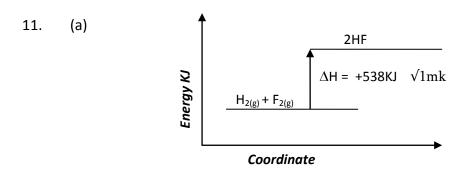
MARKING SCHEME

- 1. (a) Is the existence of two or more atoms with the same atomic number but different mass numbers. V(1mk)
 - (b) Ration1:1 $\sqrt{\frac{107 \times 1}{109 \times 1}}$ or 50% each $\sqrt{\frac{107 \times 1}{109 \times 1}}$ $\sqrt{\frac{100}{100}}$ $\sqrt{\frac{100}{100}}$ $\sqrt{\frac{100}{100}}$
- 2. (i) –Reaction with bromine water it decolourizes $\sqrt{\frac{1}{2}mk}$ or H⁺/KmNO₄- decolourizes pressure of C = C $\sqrt{\frac{1}{2}mk}$
- 3. (a) − Red-brown fumes √(1mk)
 Silvery grey solid √(1mk) (any one)

- 4. (a) Has unstable nucleus √(1mk)
 - (b) Alpha √(1mk)
 - (c) T, P √(1mk)
- 5. SO_4^{2-} V(1mk) receives a proton V(1mk)

6.
$$\frac{TO_3}{TCO_2} = \frac{RMMO_3}{RMMCO_2}$$


$$\frac{96}{TCO_2}^2 = \frac{48}{44}^2$$

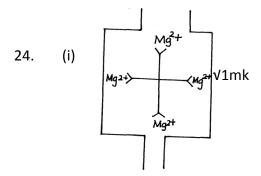

$$\frac{9216}{TCO_2}^2 = \frac{44 \times 9216}{48}$$

$$TCO_2 = 8448$$

$$= 91.913 \text{seconds} \qquad \text{V(1mk)}$$

- 7. $Al^{3+}V(1mk)$ or $Mg^{2+}V(1mk)$ Anion – $SO_4^{2-}V(1mk)$
- 8. A is more reactive than B $\sqrt{(1mk)}$ A loses valence electrons readily than B. $\sqrt{(1mk)}$
- 9. Heat V(1mk) the mixture in boiling tube
 - Iodine will sublime and solidify or undergoes deposition on the cooler parts. V(1mk)
 - Iodine is scrapped off while BaSO₄ remains at the bottom √(1mk)

(b)
$$\pm 538 = \pm 269 \text{KJ/mol}$$
 $\sqrt{1} \text{mk}$


- 12. The heat V(1mk) from burning Magnesium decomposes V(1mk) SO₂ to S and O₂. The O₂ V(1mk) formed supports burning of Magnesium.
- 13. Mass = $\underbrace{R.A.M \times Q}_{C \times F}$ $0.44 = \underbrace{88 \times (32 \times 60 + 10) \times 0.5}_{C \times 96500}$ V(1mk) $C = \underbrace{84480}_{96500 \times 0.44}$ $V(\frac{1}{2}mk)$ $= \underbrace{8448}_{42460}$ = 1.989 $\approx +2$ V(1mk)
- 14. (a) Black precipitate is formed V(1mk)(b) $H_2S_{(g)} + CuSO_{4(aq)} \longrightarrow H_2SO_{4(aq)} + CuS_{(s)} \qquad V(1mk)$
- 16. Aluminium chloride is covalent while $MgCl_2$ is ionic $\sqrt{(1mk)}$
- 17. (i) Yellow V(1mk) (ii) White V(1mk) (iii) Red-brown V(1mk) (iv) Yellow V(1mk)

18.
$$1 \text{cm}^3 = 10.8 \text{g}$$

 $100 \text{cm}^3 = \frac{1000 \times 1.8}{1}$
 $= 1800 \text{g/l} \quad \text{V(½mk)}$
 $1800 \text{g/l} = 100\%$
 $\frac{72.5 \times 1800}{100} = 72.5\%$
 $100 = 1305 \text{g/l}$
 R.FM
 $= \frac{1305}{98} \text{ V(½mk)}$

- 19. (a) Intensity of yellow colour will increase reverse reaction is favoured. V(1mk)
 - (b) Shifts to the left √(1mk)

20.
$$34g \ V(\%mk) = 98KJ$$

 $8.5g = 8.5 \times 98$
 34
 $= 24.5KJ$
 $24.5 = 100 \times 4.2 \times \Delta T$ $V(\%mk)$
 1000
 $\Delta T = 24.5 \times 1000$
 100×42
 $= 58.5^{\circ}V$ $V(1mk)$

- 21. Liquid V(1mk) Its boiling point is above $25^{\circ}C$ V(%mk)
- 22. Detergent A $\sqrt{1mk}$ Presence of a carboxylate end $\sqrt{1mk}$
- 23. Add NaOH_(aq) V(1mk) to the solution of Fe²⁺ and Fe³⁺ separately until in excess. Fe²⁺- dirt green ppt. is formed insoluble in excess. V(1mk) Fe³⁺ yellow red-brown ppt. formed insoluble in excess V(1mk)

- (ii) By adding concentrated brime from the top. ∨(1mk)
- 25. (a) Copper has higher thermal conductivity than stainless steel. $\sqrt{1mk}$
 - (b) Since steel has higher tensile strength than aluminium hence greater resistance to breaking. V(½mk)
 - (c) It is less costly / cheaper √(1mk)
 - Less high electrical conductivity √(1mk)