KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

MOI GIRLS – ELDORET HIGH SCHOOL
CHEMISTRY
PAPER 1
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: <u>www.schoolsnetkenya.com</u>

MOI GIRLS – ELDORET KCSE TRIAL AND PRACTICE EXAM 2016

QUESTION PAPER 1

MARKING SCHEME

1. 65 x 0.31 $\sqrt{2}$ + 63 x 0.69 $\sqrt{2}$ = 63.62 $\sqrt{1}$

2. Candle goes off $\sqrt{\frac{1}{2}}$

Carbon (IV) oxide $\sqrt{2}$ produced turns lime water white $\sqrt{2}$ formation of a white precipitate due to the reaction $\sqrt{2}$ between CO₂ and limewater.

3. (a) Extraction of salt $\sqrt{2}$ at L. Magadi by evaporating water till saturation $\sqrt{1}$ to form crystals $\sqrt{1}$ //

Extraction of salt from sea water $\sqrt{}$

- (b) Distillation of crude oil $\sqrt{2}$ based on boiling point // liquidification of liquid air to get nitrogen and oxygen.
- 4. (i) pH 7 $\sqrt{12}$ it is water that reacts with calcium to form calcium hydroxide and hydrogen $\sqrt{1}$ // Ca is above hydrogen in reactivity series.
 - (ii) $pH_2 \sqrt{\frac{1}{2}}$ It is acidic solution $\sqrt{\frac{1}{2}}$ from which hydrogen can be displaced by a more reactive metal Ca.
- 5. (a) K^{+} has more energy levels than $Na^{+}\sqrt{1}$
 - (b) Both are in the same period $\sqrt{2}$ Na⁺ radius is larger than Mg²⁺ $\sqrt{2}$ because additional electrons in Mg²⁺ are added to same $\sqrt{2}$ energy level and there is increase in number of protons in the nucleus leading to more force $\sqrt{2}$ of attraction between the protons and electrons making Mg²⁺ smaller than Na⁺.

6. (i)
$$2AI_{(s)} + {}^{3}/_{2}O_{2(g)} \longrightarrow AI_{2}O_{3}$$

$$\Delta H = -1673.6 \text{ kJ mol}$$

(ii)
$$Fe_2O_{3(s)}$$
 \longrightarrow $2Fe_{(s)} + {}^3/{}_2O_{2(g)}$ $\Delta H = +836.8 kJ mol$ $2AI_{(s)} + Fe_2O_{3(s)}$ \longrightarrow $AI_2O_{3(s)} + 2Fe_{(s)} $\sqrt{}$$

$$-1673.6 + 836.8 = -836.8 \text{ kJmol}^{-1} \sqrt{}$$

- $\therefore \Delta H_{Hn} = -836.8 \text{ kJmol}^{-1} \sqrt{\text{Making points}}$
- Attempt to manipulate equation (i) and (ii) $\sqrt{1}$
- Overal equation √½
- Attempt to add ΔH values $\sqrt{2}$
- Correct answer with negative sign $\sqrt{2}$
- 7. Add distilled water to $ZnCl_2$ solid $\sqrt[4]{2}$ and shake until all solid dissolves $\sqrt[4]{2}$
 - Add NaHCO3(aq) $\sqrt{\,\%}$ or Na2CO3 solution to form white $\sqrt{\,\%}$ precipitate of ZnCO3(s)
 - Filter $\sqrt{1}$ and wash the residue with a lot of water $\sqrt{2}$
- 8. (i) At 100° C 100g water \longrightarrow 48g of y 190g water \longrightarrow ? $= \frac{190}{100}$ x 48 $\sqrt{= 91.2}$ g of y $\sqrt{\frac{190}{100}}$
 - (ii) In 150g of saturated solution at 100° C mass of y = 50g At 60° C mass of y in solution = $40g \sqrt{1}$
 - ∴ Mass that crystallizes = $50 40 = 10g \sqrt{\frac{1}{2}}$ Attempt to subtract $\sqrt{1}$

=
$$(6 \times 414 \sqrt{1/2}) - \{(3 \times 435 \sqrt{1/2}) + (2 \times 343 \sqrt{1/2})\}$$

= $-957 \text{ kJ} \sqrt{1/2}$

Attempt to subtract √½

$$\frac{3.575}{3.575}$$
 $\sqrt{\frac{1}{2}}$

$$MF = (EF)_n$$

$$n \xrightarrow{\text{RMM}} = \frac{28}{\text{REF}}$$

$$n = 1\sqrt{}$$

$$MF = CO \sqrt{\frac{1}{2}}$$

- Orange $\sqrt{2}$ potassium dichromate turns green $\sqrt{2}$ due reduction process $\sqrt{2}$ // SO_2 11. (i) is a reducing agent where it reduces chromate (VI) ions to chromium (III) ions.
 - Brown $\sqrt{2}$ iron (III) sulphate solution turns green $\sqrt{2}$ due to reduction $\sqrt{2}$ of (ii) $Fe^{3+}_{(aq)}$ to $Fe^{2+}_{(aq)}$

12.
$$\frac{55}{67}$$
 = $\sqrt{\frac{MO}{71}}$ $\sqrt{\frac{\%}{2}}$

$$0.8209 = \sqrt{\frac{MO_3}{71}} \sqrt{\frac{1}{2}}$$

$$(0.8209)^2 = MO_3 \over 71 \sqrt{}$$

$$MO_3 = 71 \times 0.6739 \sqrt{\frac{1}{2}}$$

= 47.85 $\sqrt{\frac{1}{2}}$

- Pent-2-ene √1 13. (a)
 - (b) Substitution $\sqrt{1}$ (i)
 - Addition $\sqrt{1}$ (ii)
- 14. Н Н (a) Н Н

Bonds should not be joined to symbols

- (b) Alcohol $\sqrt{1}$ // Alkanols
- (c) $C_4H_{10}O_{(1)} + K_{(s)} \longrightarrow C_4H_9OK_{(1)} + N_{2(g)} \sqrt{1}$
- 15. (a) Yield decreases $\sqrt{2}$ reaction is exothermic $\sqrt{2}$ therefore it favoured by low temperatures $\sqrt{2}$
 - (b) Yield decreases $\sqrt{2}$ since the process is favoured by $\sqrt{2}$ high pressure due Boyle's law $\sqrt{2}$
- 16. (a) B $\sqrt{1}$ Acid had higher concentration $\sqrt{1}$
 - (b) The reaction rate is initially high $\sqrt{1}$ because of high concentration but decreases steadily as concentration also decreases.
- 17. (a) FeCl₂ // Iron (II) chloride
 - (b) $HCl_{(g)} \sqrt{2}$ reacted with $NaOH_{(aq)}$ to form $NaCl_{(aq)}$ and $H_{2(g)}$. The excess $\sqrt{HCl_{(g)}}$ dissolved making the solution acidic.
- 18. (a) Ammonia dissolves $\sqrt{2}$ in water to form ammonia solution which is basic $\sqrt{2}$
 - (b) Increase surface area to avoid sucking back of the gas. $\sqrt{1}$
- 19. Equation for deposition of Cu

$$Cu^{2+}_{(aq)} + 2e^{-} \longrightarrow Cu_{(s)}$$

3.

63.5g of Cu_(s) require (2 x 96500) C = 193000C $\sqrt{3}$

1.48g of Cu require → ?C

$$\left(\frac{1.48}{63.5} \times 193000\right)$$
C

$$= 4498.2C \sqrt{1}$$

Q = It

 $4498.2C = I \times (150 \times 60)S \sqrt{12}$

4498.2C = 9000I

= 0.4998 ampheres \simeq 0.5 amps $\sqrt{2}$

20. Atomic No. $C = 6 \longrightarrow 2.4$ $O = 8 \longrightarrow 2.6$

√2 C O

21. Anode equation

$$2CI_{(I)}$$
 \longrightarrow $CI_{2(g)} + 2e^{-}\sqrt{1}$

Cathode equation

$$2Na^{+}_{(I)} + 2e^{-} \longrightarrow 2Na_{(s)} \sqrt{1}$$

- 22. (a) ΔH_1 Molar enthalpy of formation of iron (II) chloride $\sqrt{1}$ ΔH_3 Molar enthalpy of formation of iron (III) chloride $\sqrt{1}$
 - (b) $\Delta H_3 = \Delta H_1 + \Delta H_2 \sqrt{ }$
- 23. Paper Metal foil Thick block of lead

24. (a)
$$Fe_{(s)} + H_2O_{(g)} \longrightarrow FeO_{(s)} + H_{2(g)} \sqrt{Correct balanced eqn - ½ mark}$$

State symbols – ½ mark

- (b) Potassium is very reactive $\sqrt[4]{2}$, therefore its reaction with water is explosive $\sqrt[4]{2}$
- (c) To prevent reaction of iron with air which would result to iron oxide $\sqrt{1 \, \text{mark}}$
- 25. (i) $X Diamond \sqrt{1} mark$ $Y - Graphite \sqrt{1} mark$
 - (ii) Uses of X
 - Drilling of metals
 - Jewellery

(Any other correct)

- (iii) Y $\sqrt{2}$ Existence of delocalized electrons $\sqrt{2}$
- 26. (i) River water contains $Ca^{2+}_{(aq)}$ and / or $Mg^{2+}_{(aq)}\sqrt{2}$ which react with soap to form s cum $\sqrt{2}$
 - (ii) Advantage

Forms lather quickly with water $\sqrt{1}$ mark

Disadvantage

It's non-biodegradable $\sqrt{\,\%}$ therefore causes environmental pollution e.g froth in sewage plants. $\sqrt{\,\%}$

27. (a)
$$E_{cell} = E_{red} - E_{oxidised}$$

= +1.36 - (-0.76) $\sqrt{1}$ mark
= + 2.12V $\sqrt{1}$ mark
(Reject if sign is missing)

(b)
$$Zn_{(s)} + 2Cl_{(aq)}^{-} \longrightarrow Zn_{(aq)}^{2+} + Cl_{2(g)} \sqrt{1}$$

28. (a) In 1000cm^3 2 moles of solute

180cm³
$$\longrightarrow$$
? moles $\sqrt{\frac{180 \times 2}{1000}}$? $\sqrt{\frac{1}{2}}$

$$12m^3 = 1000cm^3 = 1$$
 litre

∴ concentration of new solution = 0.36M $\sqrt{\frac{1}{2}}$

- (b) Oil is less dense than water ; therefore would float on $\sqrt{2}$ the water and burning would continue $\sqrt{2}$
- 29. (a) $C_{(s)} + H_2O_{(g)} \longrightarrow CO_{(g)} + H_{2(g)}$ Correct balanced equation with state symbols (1 mark)
 - (b) Reducing property $\sqrt{1}$ mark