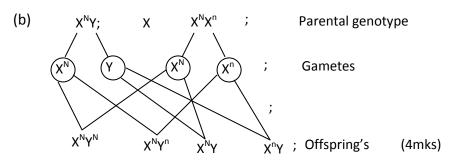
KENYA NATIONAL EXAMINATION COUNCIL **REVISION MOCK EXAMS 2016** TOP NATIONAL SCHOOLS

NAIROBI HIGH SCHOOL BIOLOGY PAPER 2 MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27

E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com


NAIROBI SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016

231/2 - PAPER 2

BIOLOGY

MARKING SCHEME

- 1. (a) B Sap vacuole/cell vacuole/vacuole; (3mks)
 - C Tonoplast;
 - D Chloroplast;
 - (b) Cellulose; (1mk)
 - (c) Active transport. (1mk
 - (d) The cell sap is hypertonic to distilled water; hence water molecules move into the cell by osmosis; making it swell and eventually burst/get haemolysed; (3mks)
- 2. (a) I $-X^{N}Y$; (1mk) 2 $X^{N}X^{n}$; (1mk)

- (c) A Non-disjunction;
 - B Translocation; 3mks max (2mks)
 - C Inversion;
- 3. (a) (i) Structural similarity.
 - Both show the pentadactyl limb structure; (1mk)
 - (ii) Adaptational difference.
 - Human arm has five digits separated into four fingers and an opposable thump for grasping;
 - The bat wing has five digits which are long and spread apart to support a large membranous wing for flight; (2mks)
 - (b) Different shapes and sizes of beaks in birds;

Different feet structure in birds; (2mks)

- (c) Chemical evolution explains the origin of life as having occurred when simple chemical compounds reacted to form the simplest life forms; organic evolution is the progressive development of complex organisms from simple pre-existing life forms over a long period of time; (2mks)
- (d) Palaeontology; (1mk)
- 4. (a) Pituitary gland; (1mk)
 - (b) II Testosterone;
 - III Follicle stimulating hormone;
 - V Luteinising hormone;
 - VI Progesterone; (4mks)
 - (c) Sterility/lack of spermatogenesis; failure of secondary sexual characteristics;
 - characteristics; (2mks)
 (d) Inhibit production of FSH/inhibit production of LH; (1mk)
- 5 (a) Ascaris; (1mk)
- (b) Intestines of humans/Pig Acc. large intestine/duodenum. (1mk)

- (c) Adaptations:
 - Has two hosts to ensure survival;
 - Lays numerous eggs to increase chances of survival;
 - Has thick cuticle which protects it against digestive enzymes of the host;
 - Eggs have a protective shell to survive harsh environmental conditions;
 - Has tissues tolerant to low oxygen/can survive under low oxygen concentration;
 - Produce anti-enzymes to counteract the effect of the host's enzymes;
 - Has a muscular pharynx through which it sucks digested food from the host's intestine;

 Any three (3mks)
- (d) Prevention
 - Proper sewage disposal/proper use of toilet facilities;
 - Maintain proper personal hygiene/washing hands after visiting the toilet;
 - Boiling/treating drinking water;
 - Proper cleaning of vegetables and fruits; Any three (3mks)
- 6. (a) Labeling of axis;;
 - Scale; (1mk)
 Curves;; (2mks)
 Plotting points;; (2mks)
 - (b) 24°C;
 - (c) Sweat production increases with increase in temperature; because high temperatures increase the vaporation rate, hence more sweat is converted to water vapour; This uses latent heat of vapourisation from the body causing cooling; (3mks)
 - (d) An increase in temperature decreases the amount of urine produced;

 This is due to increased sweating which raises the osmotic pressure of blood;

 A lot of water is reabsorbed into blood in the kidney tubules resulting in the production of little, concentrated urine; (3mks)
 - (e) Hair
- When hot, the erector pili muscle relax; the hair lies that on the skin surface; to reduce insulation and encourage heat loss;
- OR When cold, the erector pili muscles contract; causing hairs to stand;
 and trap a layer of warm air which insulated the body; (3mks)
- **Blood verses**
- When cold blood vessel; constrict (vasoconstriction); Less blood flows near skin surface; reducing heat loss by radiation and convection;
- OR When hot, blood vessels dilate (vasodilatation); more blood flows on the skin surface; increasing heat loss by radiation and convection thus cooling the body; (3mks)
- Sweat glands When hot, sweat is released; it evaporates, taking latent heat of vapourisation from the body; hence cooling it;
 - OR When cold, sweat glands release less sweat; there is less evaporation; and hence less heat loss; Total (9mks) max (6mks)
- It is muscular/has cardiac muscles; which are myogenic (does not need nervous stimulation) to pump blood;
 - It is supplies by vagus and sympathetic nerves; which controls the rate of heart beat; (depending on body's physiological requirements)
 - It has tricuspid valves and bicuspid valves; (between atrium and ventricles) which prevent back flow of the blood into the right and left ventricles respectively.
 - Present of valve tendons attached to the walls of ventricles and to the atrium ventricular walls; to prevent atria-ventricular valves from due to changes in the pressure in the ventricles;
 - Heart is supplied by coronary artery; which supplies food and oxygen to the cardiac

muscle for their pumping action; the coronary vein; in heart removes metabolic wastes;

- The heart is enclosed by the pericardium membrane; that secretes a fluid which lubricates it (reducing friction on the walls as it bumps);
- The heart is divided into two by the atria-ventricular septum; that prevent mixing of oxygenated blood and deoxygenated blood;
- The left ventricles has a thick muscular wall; to pump blood at higher pressure to the distant body issues;
- The outer part of the pericardium has a fatty layer; which act as a shock absorber; keeps the heart in position.
- The Sino Atrial Node (S.A.N) the pacemaker region); which initiate the wave of contraction leading into contraction and relaxation of muscles; the arterial-ventricular node; in the heart spreads out waves of contraction throughout the heart creating the heart beat;
- 8. Water exists as a thin film in the soil between soil particles; The concentration of cell sap is greater than that of the surrounding solution in the soil; Thus drawing water molecules across the cell wall and cell membrane into the root hair cells; by osmosis; water drawn into the root hair cell dilutes the cell sap/makes it less concentrated than that in the adjacent cell; water moves into the cortex cells (of the root); across the endodermis by active transport; into the xylem vessels of the root); then conducted up into the xylem (vessels) of the stem; into xylem of leaves; water is pushed/rises up the stem by root pressure; (in the xylem vessels) water rises by capillarity; cohesion; and adhesion forces; water moves as a continuous uninterrupted water column in the xylem vessels up the tree to the leaves.
 - As water vaporizes from the spongy mesophyll cells; their cell sap becomes more concentrated than that of the adjacent cells; This increases the osmotic pressure of the spongy mesophyll cells; As a result water flows into the cells from other surrounding cells; which in turn takes in water from xylem vessels within the leaf veins; This creates a pull/sunction force/transpiration pull; that pulls a stream of water from xylem vessels in the stem and roots; The transpiration pull maintains a continuous column of water from the roots into the leaves (transpiration stream);