4.5 PHYSICS (232)

4.5.1 Physics Paper 1 (232/1)

SECTION A

1.

$$L = \frac{18.6 + 18.5 + 18.6 + 18.5}{4}$$
 $\sqrt{(1)}$

$$L = \frac{74.2}{4} = 18.55$$

students should record 18.6 cm

 $\sqrt{(1)}$

2. 3.46 mm read from photograph.

 $\sqrt{(1)}$

3. Weight = Mass x gravity

OR (kilograms is the unit of measuring the mass and does not depict the force of gravity)

4. (a)]

 $\sqrt{(1)}$

 $\sqrt{(1)}$

5.

$$\frac{F}{A} = p \tag{1}$$

$$F = 5 \times 24$$

 $\sqrt{(1)}$

$$F = 120 N$$

6. Volume of drop

Volume of patch

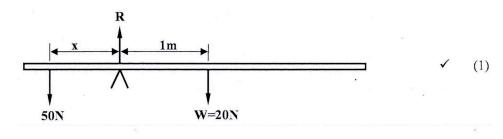
 $\sqrt{(1)}$

 $\sqrt{(1)}$

d

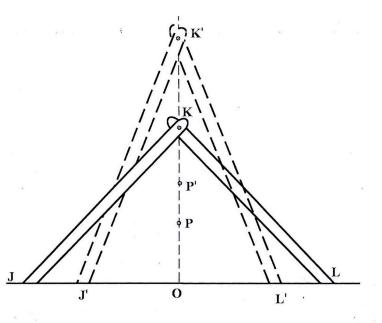
$$= \frac{V}{A}$$

7. Flask painted black absorbs more heat;


causing more expansion of air above S than above T;

 $\sqrt{(1)}$

hence S is pushed downwards and T upwards;


 $\sqrt{(1)}$

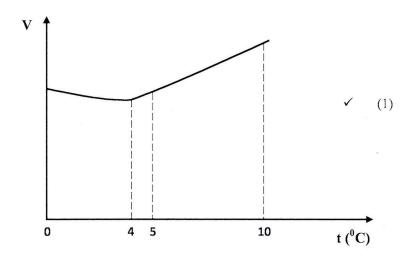
8.

$$50 x = 20 \times 1$$
 $\sqrt{1}$
 $x = 20$
 50
 $= 0.4 \text{ m}$ $\sqrt{1}$

9.

-raised K to K' ✓ (1)

-P also raised to P' ✓ (1)


10. Extension =
$$4 \text{ mm} + 4 \text{ mm}$$
 $\sqrt{(1)}$

$$= 8 \text{ mm} \qquad \qquad \sqrt{(1)}$$

11.
$$A_1V_1 = A_2V_2$$
 $\sqrt{1}$

$$\frac{V_2}{V_1} = \frac{A_1}{A_2} \tag{1}$$

12.

- **13.** (a) BC Solid changes to liquid $\sqrt{(1)}$
 - (b) DE Liquid changes to vapour $\sqrt{(1)}$
- 14. Collisions / bombardment of particles with air molecules which are in random motion. $\sqrt{(1)}$

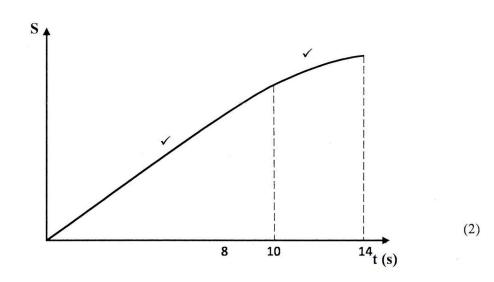
SECTION B

- 15. (a) (i) Displacement = Area under graph $= 20 \times 8 \text{ m}$
 - = 160 m

(3 marks)

(ii) After point B,

$$a = \frac{0 - 20}{4} \text{ ms}^{-2}$$


-10 N

$$= -5 \text{ ms}^{-2}$$

(iii)
$$F = ma$$
 = $2 \times -5 N$

(3 marks)

(b)

16. (a) (i) Force = 4 N

(ii) Since velocity is constant. (uniform speed) $\sqrt{(1)}$

Resultant force is zero = Force downwards is equal to force upwards

 $= 4N \sqrt{1}$

(b) (i) M.A = $\frac{load}{Effort} = \frac{20}{4}$ $\sqrt{1}$

 $= 5 \sqrt{1}$

(ii) V. R = $\frac{Effort \ dis \tan ce}{Load \ dis \tan ce}; \qquad \qquad \sqrt{1}$

 $= \frac{40}{5}; \qquad \qquad \sqrt{(1)}$

= 8;

(iii) Efficiency = $\frac{M. A}{V. R} \times 100\%$ $\sqrt{1}$

 $= \frac{5}{8} \times 100$

= 62.5% $\sqrt{(1)}$

17. (a) $l_1 = 142$, $T_1 = 290$ K, $T_2 = 298$ K, $l_2 = ?$

 $\frac{l_1}{T_1} = \frac{l_2}{T_2} \text{ or } \frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\sqrt{(1)}$

 $l_2 = 142 \times \frac{298}{290} \tag{1}$

= 145.9 mm $\sqrt{(1)}$

(b) In the hot sun the temperature of the air increases; therefore the speed of the air $\sqrt{(1)}$ molecules increases hence the rate of collisions between the molecules and tyre increases; The rate of change of momentum (pressure) $\sqrt{(1)}$ of the molecules also increases.

- (ii) All the heat lost by the steam is not absorbed by the water alone.
 - Reading the thermometer at wrong meniscus resulting in wrong temperatures.
- **18.** (a) Friction between road and tyre. $\sqrt{(1)}$
 - (b) Increases the centripetal force acting on the bus. $\sqrt{(1)}$
 - (c) (i) Weight $\sqrt{1}$ Tension $\sqrt{1}$
 - (ii) (I) f = 2 revolutions / sec

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$
 $\sqrt{1}$

$$f = \frac{\omega}{2\pi} = 2 \qquad \qquad \sqrt{(1)}$$

$$\omega = 2 \times 2\pi$$

$$= 4 \pi \text{ rad S}^{-1} = 12.56$$

$$\simeq 13 \text{ rad S}^{-1}$$

(II)
$$T + mg = mr\omega^2$$
 $\sqrt{(1)}$

$$T = mr\omega^2 - mg$$

$$= 0.2 \times 0.4 \ (16\pi^2) - 0.2 \times 10$$
 $\sqrt{(1)}$

= 10.63

$$= 10.6N \qquad \qquad \sqrt{(1)}$$

19. (a) (i) (I) Volume of water displaced = 2×5

 $= 10 \text{ cm}^3 \qquad \sqrt{1}$

(II) Mass = Volume \times density $\sqrt{(1)}$

 $= 10 \times 1$

= 0.01 kg

 $\therefore \text{weight} = 0.01 \times 10 \qquad \qquad \sqrt{(1)}$

= 0.1 N $\sqrt{(1)}$

(ii) Combined weight = upthrust

= 0.1 N $\sqrt{(1)}$

(iii) Weight of liquid displaced = 0.1N

Mass of liquid displaced = 0.01 kg = 10 g $\sqrt{(1)}$

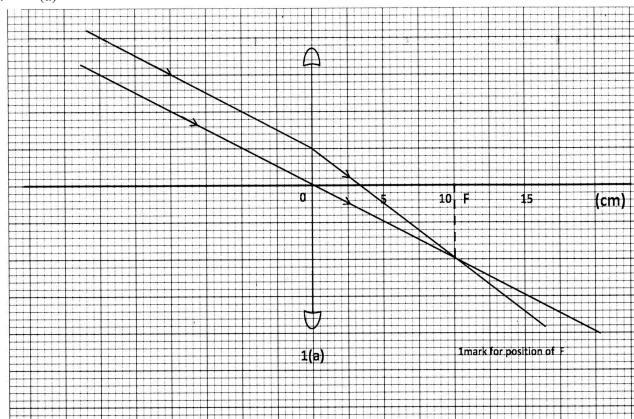
Volume of liquid displaced = $\frac{mass}{density}$ = $\frac{10}{0.8}$

= 12.5 cm^3 $\sqrt{(1)}$

 \therefore Length submerged = 2 l = 12.5

(C.S A \times l = volume)

 $0.8 l = 10 \qquad \qquad \sqrt{(1)}$

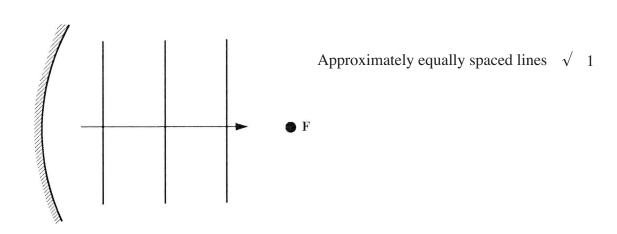

 $l = \frac{10}{0.8}$

= 6.25 cm $\sqrt{(1)}$

(b) Use a narrower test tube. $\sqrt{(1)}$

4.5.2 Physics Paper 2 (232/2)

1. (a)

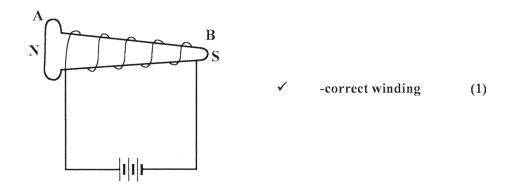

(b) Focal length = 10 cm.

 $\sqrt{1}$

2. The capacitance increases.

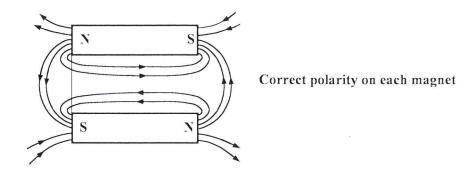
(1 mark)

3.

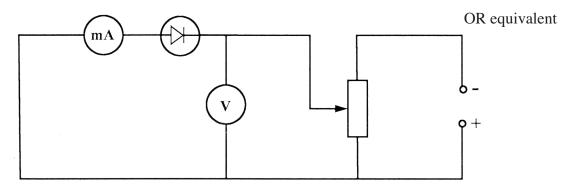

4. (a) $V = f\lambda \sqrt{1}$

$$\lambda = \frac{3.0 \times 10^8}{4 \times 10^6} \sqrt{}$$

75 m√


1

5.



6. (a) Electrons arbsorb enough energy and are ejected $\sqrt{\text{leaving the electroscope positively charged }\sqrt{\text{the leaf is repelled by the stem.}}\sqrt{}$

7.

8.

1 mark for correct bias

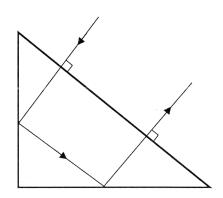
1 mark for both ammeter and voltmeter

1 mark for means of varying the p.d. across the diode.

9.
$$^{226}_{88}Ra \longrightarrow ^{4}_{2}He + ^{x}_{y}Q$$

(a)
$$4 + x = 226$$
$$x = 222\sqrt{}$$

$$\begin{array}{ll} \text{(b)} & 2+y=88 \\ & y=86\sqrt{ } \end{array}$$


- 10. estimate the quantity of charge $\sqrt{1}$
 - test for insulating properties $\sqrt{1}$
 - test for the sign of charge $\sqrt{1}$
 - test for presence of charge $\sqrt{1}$

(any two correct)

1

11. It stops the fast moving electrons $\sqrt{\text{whose kinetic energy is converted to heat.}}$

12.

1 mark for ray incident on hypotenuse

1 mark for showing two internal reflections

13. Q = 1t 1 mark for either formula $n = \frac{Q}{e}$

$$=\frac{2.0\times10^{-4}\times1}{1.6\times10^{-19}}$$

1 mark for substitution

$$=1.25\times10^{15}$$
 electrons

1 mark for answer

SECTION B

14. (a) (i) I D - soft iron armature $\sqrt{}$

II E - contacts $\sqrt{}$

- (ii) I. Soft iron core is magnetised $\sqrt{}$ and 1 attracts the armature $\sqrt{}$ the hammer hits 1 the gong.
 - II. Contact is broken $\sqrt{}$ when armature is 1 attracted by the core. The core then loses magnetism. $\sqrt{}$ 1 The armature loses magnetism and $\sqrt{}$ springs back making contact again and the process is repeated.
- (b) (i) $I = \frac{P}{V} \sqrt{}$

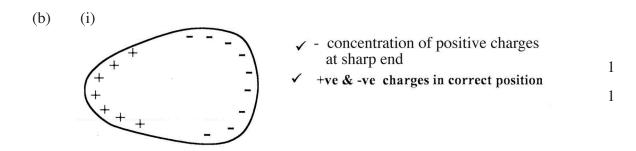
$$=\frac{60}{240} \quad \checkmark$$

$$=0.25A \sqrt{}$$

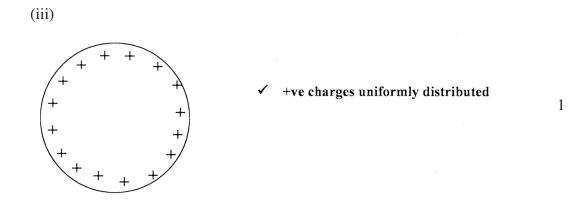
(ii) $R = \frac{V}{I}$ $\sqrt{}$

$$R = \frac{240 \times 240}{60} \qquad \text{V OR } \frac{240}{0.25}$$

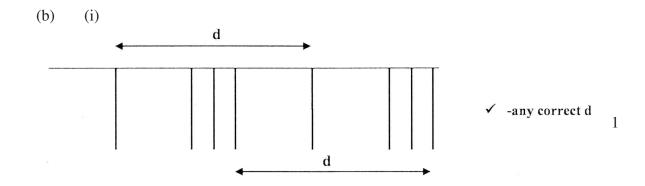
$$R = 960 \,\Omega \quad \sqrt{}$$


- 15. (a) (i) resistance in the coils. $\sqrt{}$
 - (ii) use of thicker copper wires. $\sqrt{}$
 - (b) (i) $\frac{N_p}{N_s} = \frac{V_p}{V_s}$
 - $=\frac{240}{12} \qquad \qquad \checkmark$
 - $=\frac{20}{1}$

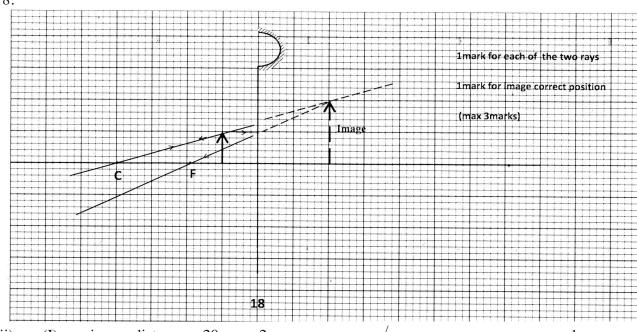
1


- (ii) Power input $= V_p I_p$ $\sqrt{}$ 1 $= 240 \times 0.36$ $\sqrt{}$ 1 = 86.4W $\sqrt{}$
- (iii) Power output = 80W $\sqrt{}$
- (iv) Efficiency $\frac{power\ output}{power\ input}$ $\sqrt{}$ 1 $=\frac{80}{86.4}$ =92.59% $\sqrt{}$ 1
- 16. (a) (i) (I) $I_1 = \frac{V}{R_1}$ $\sqrt{}$
 - $I_2 = \frac{V}{R_2} \qquad \qquad \sqrt{ \qquad 1}$
 - $(\mathrm{III}) \qquad I_T = I_1 + I_2$
 - $I_T = \frac{V}{R_1} + \frac{V}{R_2} \qquad \qquad \checkmark$
 - (iii) $I_T = \frac{V}{R_T}$
 - $\frac{V}{R_T} = \frac{V}{R_1} + \frac{V}{R_2} \qquad \qquad \checkmark$

divide through by V


$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$
, hence $R_T = \frac{R_1 R_2}{R_1 + R_2}$

- (ii) (I) The conductor loses the negative charges to earth. $\sqrt{}$
 - (II) The conductor acquires a net $\sqrt{\text{positive charge/which redistributes itself.}}$

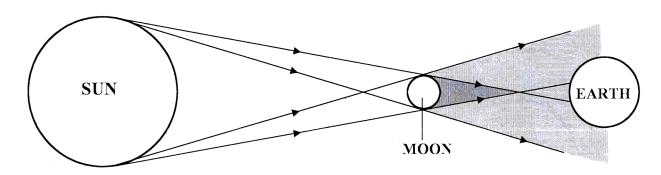

- 17. (a) (i) (I) sound is soft when the waves arrive out of phase; √ 1 such waves undergo destructive interference. 1
 - (ii) same sound loud. √
 Along PQ the waves undergo constructive intereference as they arrive in phase. √
 1

(ii) $R \sqrt{}$

(iii) As the longitudinal waves pass $\sqrt{}$ molecule R moves along to either side. 1 For a crest, R moves away from source.

18.

(ii) (I) image distance = $20 \text{ cm} \pm 2 \text{ cm}$


(II)

 $\text{magnification } = \frac{Image \ dis \tan ce}{Object \ dis \tan ce} \quad \sqrt{}$

$$=\frac{20}{10} \qquad \qquad \checkmark \qquad \qquad 1$$

$$= 2 \pm 0.2 \qquad \qquad \sqrt{} \qquad \qquad 1$$

(iii) Infinity. $\sqrt{}$

- Outer pair of rays $\sqrt{}$
- Inner pair of rays $\sqrt{}$
- proper labelling of umbra and penumbra $\sqrt{}$

4.5.3 Physics Paper 3 (232/3)

QUESTION ONE PART A

(a) (i) D =
$$0.38 \text{ mm} \pm 0.02$$
 (1 mark)

(ii)
$$d = 0.28 \text{ mm} \pm 0.05$$
 (1 mark)

(b)
$$C_1 = \frac{D}{d} = \frac{0.38}{0.28} = 1.357$$
 (1 mark)

(c)
$$l_1 = 38.5 \text{ cm}$$
 (1 mark)

$$l_2 = 61.5 \text{ cm} \tag{1 mark}$$

 $(l_1 < l_2)$

$$\frac{R_p}{9} = \frac{38.5}{61.5}$$

$$\therefore R_p = 5.63\Omega$$

$$C_2 = \sqrt{\frac{9}{5.63}}$$
 (2 marks)

$$= 1.264 (2 marks)$$

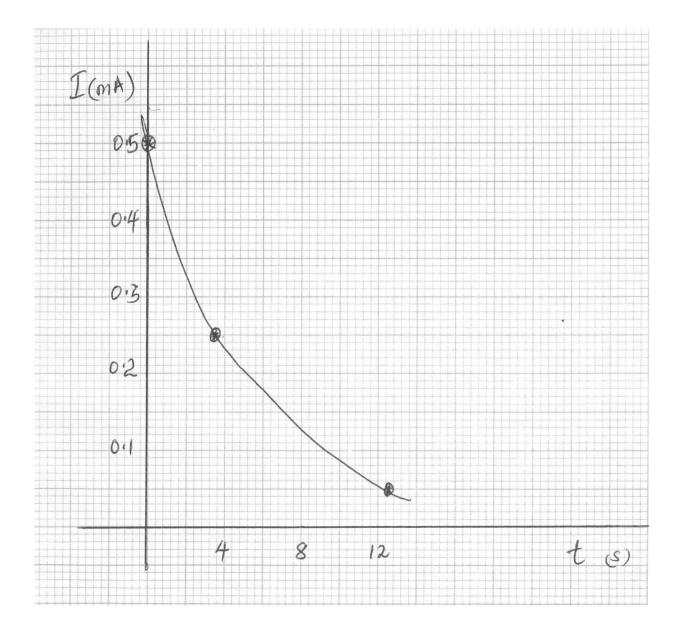
(ii) C_1 and C_2 are nearly equal (to the nearest whole number). (1 mark)

QUESTION ONE PART B

$$V = 3.1 \text{ volts } \pm 0.1$$

$$I_0 = \frac{V}{R} = \frac{3.1}{4.7 \times 10^3} \quad A$$
$$= \quad 0.659 \text{ mA}$$

 $I_1 = 0.63 \text{ mA}$


For
$$\frac{I_1}{2}$$

$$t_1 = 3.9 s$$
 (1 mark)

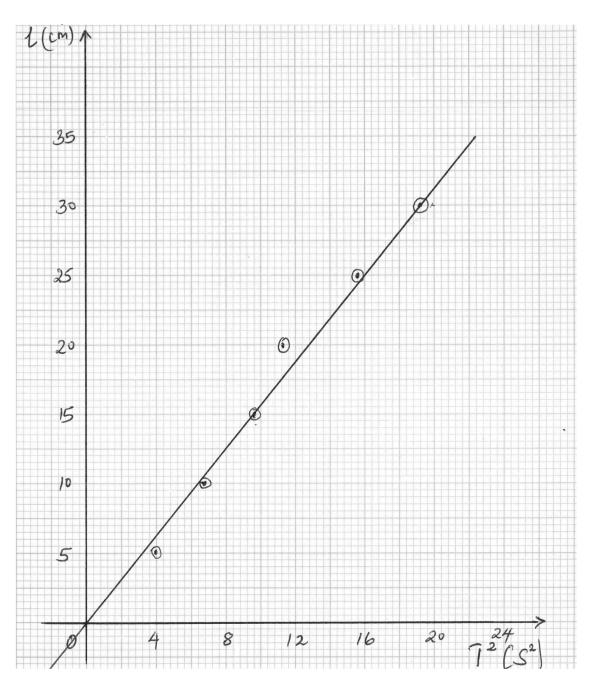
For
$$\frac{I_1}{10}$$

$$t_2 = 13.5 s ag{1 mark}$$

I	0.5	0.25	0.05
t	0	3.6	12.5

(3 marks)

QUESTION TWO


(d)

l (cm)	5	10	15	20	25	30
t(s)	20.1	26.3	31.2	33.0	39.6	43.4
T(s)	2.01	2.63	3.12	3.3	3.96	4.34
$T^2(S^2)$	4.04	6.92	9.73	10.89	15.68	19.84

(6 marks)

(e) Graph.

(5 marks)

(f) Gradient =
$$\frac{20}{16} cm/s^2$$
$$= \frac{0.20}{16} cm/s^2$$

 $= 0.015625 \text{ ms}^{-2}$

(g)
$$l_{\rm N} = 20 \, {\rm cm} = 0.2 \, {\rm m}$$

(i) $t_{N} = 52.0$

(ii)
$$T_N = 5.2$$

(iii)
$$T_N^2 = 27.04$$

 $H = \frac{0.2}{27.04} = 0.007396$ (1 mark)

(iv)
$$\frac{H}{S} = \frac{0.007396}{0.015625}$$
$$= 0.4737$$

(2 marks)

(3 marks)

(1 mark)