3.20 ELECTRICITY (448)

3.20.1 Electricity Paper 1 (448/1)

SECTION A (48 marks)

Answer **all** the questions in this section in the spaces provided.

- 1 (a) Outline the procedure of connecting an ammeter to take a measurement in a circuit. (2 marks)
 - (b) **Figure 1** shows a resistor with colour bands.

Figure 1

Determine its:

(i) nominal resistance; (1 mark)

(ii) maximum resistance. (2 marks)

(2 marks)

- 2 (a) State **two** reasons for using a circuit diagram when troubleshooting an electrical equipment. (2 marks)
 - (b) State **four** components of a bill of materials in project fabrication. (2 marks)
- 3 (a) Explain the effect of each of the following in a p-n junction: (2 marks)
 - (i) forward bias;
 - (ii) reverse bias.
 - (b) State the meaning of each of the following ratings of a light emitting diode:

(i) $I_{F(max)}$;

 $\text{(ii)} \qquad V_{F(typ)}.$

4 Figure 2 shows a transformer whose primary impedance is 1 kΩ.

Figure 2

Determine the:

- (a) primary current I_p;
- (b) voltage across R_L .
- 5 With the aid of labelled diagrams, illustrate the arrangement of magnetic domains in:
 - (a) unmagnetised material;
 - (b) magnetised material.

(3 marks)

6 (a) **Figure 3** shows a voltage divider circuit.

Figure 3

Determine the value of;

(i) E;

	(ii)	R_2 ;	
	(iii)	R_3 .	(4 marks)
	(b)	A consumer has the following loads connected to the supply:	
		 (i) five 60 W lights for 4 hours; (ii) one 2 kW kettle for ½ hour. 	
		Calculate the total:	
		(i) energy consumed;	
		(ii) cost of energy used if the rate is 80 cents per unit.	(2 1)
7	(a)	State three safety precautions to be observed by an operator using a portable drill.	(3 marks) electric (3 marks)
	(b)	Name four communication service provider companies currently operating i Kenya.	n (2 marks)
8	(a)	Name four types of insulating materials used in electrical circuits.	(2 marks)
	(b)	State three advantages of PVC conduit wiring systems.	(3 marks)
9	(a)	Calculate the inductance required to cause resonance at 150 kHz when the capacitance is 1.0 pF.	(2 marks)
	(b)	In a 240V circuit, the load current is 2.5 A. If the power factor is 0.6, calcula	ate:
		(i) apparent power;	
		(ii) true power.	(3 marks)
10	Make	e a free hand isometric drawing of a conduit saddle.	(5 marks)
		SECTION B (52 marks)	
		Answer any four questions from this section in the spaces provided.	
11	Figur an obj	re 4 , in the next page, shows the front elevation, end elevation and an incomple bject.	te plan of
	(a)	Complete the plan;	
	(b)	On the isometric grid provided, draw the isometric projection of the object method the lowest point.	naking X
			(13 marks)

12 Figure 5 shows waveforms A and B. Their vertical and horizontal scales are given.

- (a) Name each of the **two** waveforms. (1 mark)
- (b) State the number of cycles displayed in each waveform. (2 marks)
- (c) Calculate:
 - (i) frequency of waveform A;
 - (ii) amplitude of each waveform;
 - (iii) RMS voltage of waveform A.

(10 marks)

- 13 (a) Draw a labelled diagram of a consumer unit with the following final circuits.
 - (i) lighting circuit;
 - (ii) water heater circuit;
 - (iii) bell circuit;
 - (iv) cooker circuit;
 - (v) ring circuit.

(11 marks)

- (b) State the typical fuse ratings for any **four** of the final circuits in (a). (2 marks)
- **Figure 6** shows an amplifier circuit whose current gain is 50.

- (a) (i) Name the type of transistor;
 - (ii) State the function of the capacitor C.
 - (iii) Name the type of biasing.

(3 marks)

(b) Calculate the values of:

(10 marks)

- (i) voltage across R_1 ;
- (ii) base current I_B ;

- (iii) collector current I_C ;
- ${\rm (iv)} \quad \ {\rm voltage} \ {\rm V_{\rm CE}}.$
- 15 Figure 7 shows an R-L-C circuit.

Figure 7

- (a) Calculate the:
 - (i) impedence of the circuit; (7 marks)
 - (ii) current. (3 marks)
- (b) Draw the phasor diagram. (3 marks)