4.5 **PHYSICS (232)**

4.5.1 Physics Paper 1 (232/1)

1. 5.32 cm (1 mark)

- 2. magnitude of the force
 - The perpendicular distance between the force and the pivot. (1 mark)
- 3. Patmosphere = Pmercury + pair enclosed;

(3 marks)

4. (a) F = Ke; 20 = 0.5 K; $K = 40 \text{ Ncm}^{-1}$

(2 marks)

(b) $F = 40 \times 0.86 =$ = 34.4 N;

(1 mark)

- 5. Weight of object in air
 - Weight of object when fully immersed in fluids

(2 marks)

6. Upthrust = weight in air - weight of object in fluid.

- (1 mark)
- 7. Wood is a poor conductor of heat; hence heat is used to burn paper, while most heat is conducted away by copper; hence paper takes long to burn. (2 marks)
- 8. Clockwise moments = anticlockwise moments;

$$0.18x = 1(50 - x) + 0.12(100 - x)$$

$$0.18x = 50 - x + 12 - 12x$$

$$0.18x = 62 - 1.12x$$

$$7.30x = 62$$

$$x = 47.69 \text{ cm};$$

(3 marks)

9. Air is compressible; so the transmitted pressure is reduced;

(2 marks)

10. The high velocity of the gas causes a low pressure region;

Atmospheric pressure is higher;

Pressure difference draws air into the region;

(3 marks)

11. Water molecules have a high adhesion forces; With glass molecules and hence rise up the tube while mercury molecules have greater cohesion;

Forces within than adhesion with glass hence do not rise up.

(2 marks)

12. Allow for expansion;

Water expands on cooling between 4° C and 0° C;

(1 marks)

13. Diffusion of the ink molecules;

(1 mark)

SECTION B

- 14. (a) increasing the angular velocity;
 - Reducing the radius of the path;

(2 marks)

(b) (i) Tension in the string;

(1 mark)

(ii) Arrow to centre of circle;

(1 mark)

- (iii) Direction of motion of object changes and causes the velocity to change with time; (1 mark)
- (iv) $F = \frac{MV^2}{r};$ $= \frac{0.5 \times 8^2}{2}$

(3 marks)

(c) (i) $V^2 = u^2 + 2as;$ $0 = u^2 - 2 \times 10 \times 100$ $u = \sqrt{2000}$ $44.72 \text{ ms}^{-1};$

= 16N;

(2 marks)

(ii) V = u + at; $0 = 44.72 - 10 \times t$ t = 4.472Total time = 2×4.472

= 8.94s; (2 marks)

- 15. (a) Quantity of heat required to convert 1 kg of ice at 0° C to water without change in temperature; (1 mark)
 - (b) (i) E = Pt;= $60 \times 5 \times 60;$ = 18000 J; (3 marks)
 - (ii) Mass of water = 190 130 = 60g; $ml_f = Pt$.

$$\frac{60}{1000}l_f = 60 \times 60 \times 5;$$

$$l_f = 3 \times 105 \text{ J/Kg};$$
(4 marks)

- (iii) Heat from the surrounding melts the ice; (1 mark)
- 16. (a) F = Ma; $F = 2 \times 5$ = 10N;friction force = 12 - 10

$$= 2N; (3 marks)$$

(b) (i) OA - the ball bearing decelerates; as the upthrust increases to a maximum; (2 marks)

AB - ball attains terminal velocity; when upthrust = weight; (2 marks)

(c) (i)
$$VR = 2$$
 (1 mark)

- (ii) To change direction of effort; (1 mark)
- (iii) Efficiency = $\frac{MA}{VR} \times 100$; $80 = \frac{MA}{2} \times 100\%$ MA = 1.6;

$$\therefore 1.6 = \frac{L}{500}$$

$$L = 500 \text{ X } 1.6$$

= 800 N; (3 marks)

17. (a) (i) F = mg= 10×10 = 100 N ; Additional pressure = $\frac{100N}{100 \text{ cm}^2} = 1 \text{ Ncm}^{-2}$;

new reading = 10 + 1 = 11 N; (4 marks)

- (ii) Pressure has increased; because, when the volume reduces, the collisions between the gas molecules and walls of the container increases; (2 marks)
- (b) (i) Pressure = 11 Ncm^{-2} (1 mark)
 - (ii) $\frac{P_1}{T_1} = \frac{P_2}{T_2};$ $\frac{1}{300} = \frac{11}{T_2};$ $T_2 = \frac{300 \times 11}{10} = 330k;$ $T_2 = 57^{\circ} C$ (4 marks)

- 18. (a) (i) (I) Reading decreases on spring balance;
 - (II) Reading on weighing balance increases.
 - (ii) As the block is lowered, upthust increases; and hence it apparently weighs less;

(4 marks)

(b) (i) Upthrust - weight in air - weight in water

$$=$$
 2.7 - 2.46 $=$ 0.24 N;

Reading in weighing balance = 2.8 + 0.24

$$= 3.04 N;$$

(2 marks)

(ii) Relative density = weight in air; upthrust

$$=\frac{2.7}{0.24}$$

= 11.25;

Density = $R.d \times density of water$

$$= 11.25 \times 1000$$

$$=$$
 11250 kgm⁻³;

(3 marks)

(c) The hydrometer sinks more;

The density of the water is reduced;

(2 marks)