4.20 ELECTRICITY (448)

4.20.1 Electricity Paper 1 (448/1)

SECTION A

1. (a) Procedure of connecting an ammeter to take measurements in a circuit

- Turn off the power
- Ammeter should be connected in series with the load current.
- Observe polarity.
- Select the range starting from the highest.

 $(4 \times \frac{1}{2} = 2 \text{ marks})$

(b) (i) **Nominal resistance**

Orange	Black		Brown	
3	0	X	10^{1}	$= 300 \Omega$

∴ Nominal =
$$300 \Omega$$
 (1 mark)

(ii) Maximum resistance

$$300 + 5\% = 315 \Omega$$
 (2 marks)

2. (a) Circuit diagram

- Shows connection of every component.
- Shows values of components.
- Shows the position of the components.
- Shows functionality of the circuit.

 $(any 2 \times 1 = 2 marks)$

(b) Bills of materials

- Materials/parts.
- Quantity.
- Size.
- Estimate costs.

 $(4 \times \frac{1}{2} = 2 \text{ marks})$

3. (a) (i) Forward bias

reduces $(\frac{1}{2})$ the PN-junction (depletion layer) and hence the diode conducts $(\frac{1}{2})$.

(ii) Reverse bias

increases $(\frac{1}{2})$ the PN-junction (depletion layer) hence the diode does not conduct $(\frac{1}{2})$.

(2 marks)

- (b) (i) $I_{F(max)}$: is the maximum forward current that the diode can pass without burning out. (1 mark)
 - (ii) $V_{\text{F(typ)}}$: is the forward voltage across the diode at the typical operating current. (1 mark)
- 4. (a) $I_p = \frac{V}{R}$
 - $= \frac{100 \text{ V}_{\text{rms}}}{1 \text{ k}\Omega} \qquad \qquad (\frac{1}{2})$
 - $= 0.1 \text{ A} \qquad \qquad \left(\frac{1}{2}\right)$
 - (b) $N_1 I_1 = N_2 I_2$ (1)
 - $1200 \times 0.1 = 400 \times I_2$ $(\frac{1}{2})$
 - $I_2 = \frac{120}{400} = 0.3 \text{ A}$ $(\frac{1}{2})$
 - $V_2 = I_2 R_2 \tag{\frac{1}{2}}$
 - $= 0.3 \times 8000$ $(\frac{1}{2})$
 - $=2,400 \qquad \qquad \left(\frac{1}{2}\right)$

(5 marks)

5. (a)

(b)

- Drawing = $(\frac{1}{2})$ Labelling = $(\frac{1}{2})$ Direction = $(\frac{1}{2})$ = $1(\frac{1}{2})$ marks
- Drawing = $\left(\frac{1}{2}\right)$ Labelling = $\left(\frac{1}{2}\right)$ Direction = $\left(\frac{1}{2}\right)$ = $1\left(\frac{1}{2}\right)$ marks

6. (a) (i) $E = 5 + (I \times R_1)$

- $\left(\frac{1}{2}\right)$
- $= 5 + (2 \times 10^{-3} \times 2000)$
- $\left(\frac{1}{2}\right)$

 $\left(\frac{1}{2}\right)$

- = 5 + 4
- = 9 V

(ii)
$$R_2 = \frac{V_2}{I} \quad \left(\frac{1}{2}\right) \quad = \frac{4V}{2mA} \quad \left(\frac{1}{2}\right) \quad = 2 \ k\Omega \quad \left(\frac{1}{2}\right)$$

(iii)
$$R_3 = \frac{V_3}{I} = \frac{1V}{2mA} = 0.5 \text{ k}$$
 (1)

(4 marks)

(b) (i) Energy consumed

Lights
$$5 \times 60 \times 4 = 1.2 \text{ kwh}$$
 $\left(\frac{1}{2}\right)$

Kettle
$$1 \times 2 \times 0.5 = 1.0 \text{ kwh}$$
 $\left(\frac{1}{2}\right)$

Total energy =
$$2.2 \text{ kwh}$$
 (1)

(ii) Cost of energy

$$= 2.2 \times 80 = 1.76 \text{ sh}$$
 (1)

(3 marks)

7. (a) Safety precautions to be observed

- Ensure that the equipment is properly earthed.
- Do not use it in damp areas.
- Always remove the plug from the socket when the equipment is not in use.
- When using extensions, ensure the joints are firm and insulated using the electricians insulation tape.
- Hold it firmly.
- Avoid loose clothing like ties.

(any $3 \times 1 = 3$ marks)

(b) Communication service providers in Kenya

- Telkom Kenya
- Safaricom
- Airtel

- Yu

 $(4 \times \frac{1}{2} = 2 \text{ marks})$ or any other existing ones

8. (a) Insulating materials used in electrical circuits

- PVC
- Porcelain
- Magnesium oxide
- Paper
- Rubber
- Air
- Formica

 $(4 \times \frac{1}{2} = 2 \text{ marks})$

(b) Advantages of PVC

- Easy of erection.
- It is cheap.
- It is resistant to corrosion.
- It is light.
- There is no risk to earth leaks.

 $(any 3 \times 1 = 3 marks)$

9. (a) **Inductance required**

$$L = \frac{1}{4\pi^{2} f^{2}C}$$

$$= \frac{1}{4\pi^{2} (1.5 \times 10^{5})^{2} (10^{-12})}$$

$$= 1.13 \times 10^{-3} H$$

$$= 1.13 H$$

$$(\frac{1}{2})$$

(2 marks)

(b) (i) Apparent power

= IV
$$(\frac{1}{2})$$

= 2.5 × 240 $(\frac{1}{2})$
= 600 VA $(\frac{1}{2})$

(ii) True power

= apparent power × power factor
$$\left(\frac{1}{2}\right)$$

= 600×0.6 $\left(\frac{1}{2}\right)$
= 360 w $\left(\frac{1}{2}\right)$

(3 marks)

10.

Faces = $4 \times \frac{1}{2} = 2$ Holes = $2 \times \frac{1}{2} = 1$ Projection = 1Neatness = $\frac{1}{2}$ Proportionality = $\frac{1}{2}$

(5 marks)

11.

11. Complete Plan Faces=2×½ Hidden details= $2 \times 1 = 2$ TOTAL 3 1 2 5 Faces 1, 5 and $7=3\times\frac{1}{2}$ Faces 2, 3,4,6 and $8=5\times1$ $1 = 1\frac{1}{2}$ =5

Projection

Neatness

Placement of X

TOTAL

=1=1/2

 $\frac{=\frac{1}{2}}{9}$

12. (a) Name of waveforms

- A sine wave
- B saw tooth $\left(\frac{1}{2}\right)$

(b) **Number of cycles**

$$A - 2$$
 cycles (1)

$$B - 3\frac{1}{4} \text{ cycles} \tag{1}$$

(c) (i) Frequency of waveform A

$$=\frac{1}{T}$$
 where T = period $(\frac{1}{2})$

 $\left(\frac{1}{2}\right)$

$$T = 50\mu \times 4 \tag{1}$$

$$= 200 \ \mu s$$
 (1)

$$f = \frac{1}{T} = \frac{1}{200 \times 10^{-6}} = \frac{10^{6}}{200}$$
 $(\frac{1}{2})$

$$= 5 \text{ kHz} \tag{1}$$

(ii) Amplitude

$$A = V_{pk} = 200 \text{ mV} \times 3 \tag{1}$$

$$= 600 \text{ mV}$$
 (1)

$$= 0.6 \text{ V}$$

$$B = V_{pk} = 0.5 \text{ V} \times 2 \tag{1}$$

$$= 1 V_{pk}$$
 (1)

(iii) RMS value of A

$$=0.707 \times V_{pk} \tag{1}$$

$$= 0.707 \times 0.6$$

$$= 0.424 \text{ V}$$
 (1)

(13 marks)

13. (a)

Correct Drawing = 8 Labelling 6 items = 3

(11 marks)

(b) (i) Lighting circuit 5 A Ring circuit (ii) 30 A (iii) Water heater 20 A (iv) Door bells 5 A (v) Cooker unit 45 A

(any $4 \times \frac{1}{2} = 2$ marks) (Total = 11 + 2 = 13 marks) 14. (a) (i) **Type of transistor**

NPN

(1)

(ii) Function of capacitor C

To block D.C

(1)

(1)

(iii) Type of biasing

Fixed bias

(3 marks)

(b) (i) $VR_1 = V_{CC} - V_{be}$

(1)

= 6.0 - 0.6

= 5.4 V

(1)

(ii) $I_B = \frac{VR_1}{R_1} = \frac{5.4}{100 \times 10^3}$

(1)

 $= 5.4 \times 10^5$

 $= 54 \mu A$

(iii) $I_C = \beta I_B$

(1)

 $= 54 \times 10^{-6} \times 50$

(1)

= 2.7 mA

(iv) Voltage V_{CE}

 $VR_2 = I_C \times R_2$

(1)

 $= 2.7 \text{ mA} \times 1 \times 10^3$

= 2.7 V

(1)

 $V_{CE} = V_{CC} - VR_2$

(1)

= 6 - 2.7 V

= 3.3 V

(1)

(10 marks)

15. (a) (i)
$$X_L = 2\pi fL$$
 (1)

$$=2\pi\times50\times0.05$$
 $(\frac{1}{2})$

$$=15.70~\Omega~(\frac{1}{2})$$

$$X_C = \frac{1}{2\pi fc} \tag{1}$$

$$=\frac{1}{2\pi\times50\times2\times10^{-6}}$$
 $\left(\frac{1}{2}\right)$

$$= 1592 \ \Omega \tag{\frac{1}{2}}$$

$$Z = \sqrt{R^2 + (X_C - X_L)^2}$$
 (1)

$$= \sqrt{1000^2 + (1592 - 15.7)^2} \tag{1}$$

$$= 1866 \ \Omega \tag{1}$$

(7 marks)

(ii) Current =
$$\frac{V}{Z}$$
 (1)

$$=\frac{240}{1866}$$
 (1)

= 0.12 A
$$(\frac{1}{2})$$
 Amps $(\frac{1}{2})$ (1)

(3 marks)

(b)

Axes = 1
Labelling =
$$4 \times \frac{1}{2} = 2$$

(3 marks)