4.6 **CHEMISTRY (233)**

4.6.1 Chemistry Paper 1 (233/1)

- 1. (a) X is water. $\sqrt{(1)}$ or H_2O
 - (b) It is slightly soluble in water. $\sqrt{(1)}$ and denser than air.
 - (c) Used in hospitals to resuscitate patients. $\sqrt{(1/2)}$
 - Used in welding when mixed with acetylene in the ocy-acetylene flame. $\sqrt{(1/2)}$
 - Used by divers and mountaineers.
 - · Rocket fuel, hospitals for breathing, steel making.

2. (a)
$$2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}$$
 $\sqrt{(1)}$

(b)
$$2AgNO_{3(s)} \rightarrow Ag_{(s)} + 2NO_{2(g)} + O_{2(g)} \sqrt{(1)}$$

(c)
$$2\text{FeSO}_{4(s)} \rightarrow \text{Fe}_2\text{O}_{3(s)} + \text{SO}_{2(g)} + \text{SO}_{3(g)} \sqrt{1}$$

- 3. Crush the seeds in a mortar $\sqrt{(\frac{1}{2})}$ using a pestle.
 - Add a suitable solvent (acetone / propanone $\sqrt{(1/2)}$).
 - Filter out the solid matter. $\sqrt{(1/2)}$
 - Evaporate the filterate to obtain oil. $\sqrt{(1/2)}$
- 4. (a) Aluminium has a stronger metallic $\sqrt{1}$ bond because it has more delocalised electrons than sodium. $\sqrt{1/2}$
 - (b) Sulphur has a ringed structure of S_8 $\sqrt{1}$ molecules whiles chlorine is diatomic. The forces in sulphur are stronger than chlorine. $\sqrt{1/2}$
- 5. (a) It does not sublime. $\sqrt{(1)}$
 - (b) Cut a piece of Sodium $\sqrt{(\frac{1}{2})}$ metal, place it on a deflagrating spoon, heat it briefly $\sqrt{(\frac{1}{2})}$ then lower it $\sqrt{(\frac{1}{2})}$ into a gas jar of chlorine. It will continue burning forming Sodium Chloride. $\sqrt{(\frac{1}{2})}$

6. (a)
$$Cu^{2+}_{(aq)} + 2e \rightarrow Cu_{(s)} \sqrt{1}$$

(b) 63.5 g require 2 x 96500 C

$$1.184g = \frac{2 \times 96500 \times 1.184}{63.5}$$

3598.6 coulombs $\sqrt{(1)}$

Q = 1t

$$3586.5 = 2 \text{ x t}$$

 $3586.5 = t$
 2
 2
 2
 2
 30 minutes
 30 minutes
 30 minutes

- 7. (a) (i) X Calcium carbide $\sqrt{(1)}$ or CaC,
 - (ii) Y CH₂ = CHCl Chloroethene $\sqrt{(1)}$ or vinylchloride
 - (b) Floor tiles $\sqrt{\binom{1}{2}}$ • Rain coats $\sqrt{\binom{1}{2}}$ • Plastic bags $\sqrt{\binom{1}{2}}$

8.

Working diagram, α should be deflected less than β because of its heavier mass.

(Accept any other working diagram)

9. In water, HCl is ionised $\sqrt{\binom{1}{2}}$ into H⁺ and Cl⁻ the Chloride ions are oxidised to chlorine gas by potassium permanganete. $\sqrt{\binom{1}{2}}$

In methylbenzene, HCl remains in molecular $\sqrt{(1/2)}$ form i.e HCl. The Chloride is not available for oxidation hence no reaction. $\sqrt{(1/2)}$

- 10. (a) $T^{(1)}$
 - (b) $15 \text{ g } \sqrt{(1)}$
 - (c) Fractional crystallization $\sqrt{(1)}$
- 11. (a) $N_2H_{_{4(g)}} + O_{_{2(g)}} \rightarrow N_{_{2(g)}} + 2H_2O_{_{(g)}}\sqrt{(1)}$
 - (b) Bond breaking energy

$$163 + 4 (388) + 496$$

$$= 2211 \text{ kJ} \qquad \sqrt{\frac{1}{2}}$$

Bond making energy

$$944 + 4 (463)$$

= -2796 kJ $\sqrt{(1/2)}$

Ethalpy change = Bond breaking + Bond making energies.

$$2211 + (-2796) \qquad \sqrt{(1)}$$
= -585 kJ/mol $\sqrt{(1)}$

12. (a) The acidified permanganete will be decolourised $\sqrt{\frac{1}{2}}$. (purple to colourless)

The permanganate (VII) is reduced to manganese (II) ion. $\sqrt{\binom{1}{2}}$

- (b) (i) A white precipitate forms. $\sqrt{(1)}$
 - (ii) $Ba^{2+}_{(aq)} + SO_3^{2-}_{(aq)} \rightarrow BaSO_{3(s)}$ $\sqrt{(1)}$
- 13. (a) $[Zn(NH_3)]^{2+}$ $\sqrt{(1)}$
 - $(b) \qquad Zn^{2+}_{\ (aq)} + Mg_{(s)} \ \to Zn(s) \ + \ Mg^{2+}_{\ (aq)} \quad \sqrt{(1)} \ ZnCl_{(2)(aq)} + Mg_{(s)} \ \to \ Zn_{(s)} \ + \ MgCl_{2(aq)}$
- 14. (a) Charles Law

At constant pressure, the volume of a fixed mass of gas is directly proportional to its absolute temperature. $\sqrt{(1)}$

(b)
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \qquad \qquad P_1 = 98.39 \text{ kPa}$$

$$V_1 = 146 \text{ d}\mu^3$$

$$T_1 = 18 + 273 = 361 \text{ K}$$

$$T_2 = \frac{P_2V_2T_1}{P_1V_1} \qquad \qquad P_2 = 101 \text{ kPa}$$

$$V_2 = 133$$

$$T_2 = \frac{100 \times 133 \times 361}{98.39 \times 146} \qquad \sqrt{1}$$

$$T_2 = \frac{4849313}{14364.94} \qquad \sqrt{1}$$

$$T_2 = 273.22 \text{ K}$$

- 15. (a) R and T $\sqrt{(1)}$
 - (b) $T^{\sqrt{(1)}}$
- 16. X Zinc granules $\sqrt{(1)}$ The gradient of the graph is less steep $\sqrt{(1)}$ because there is less surface area. $\sqrt{(1)}$
- 17. (a) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $\sqrt{(1)}$
 - (b) Because nitrogen is inert. $\sqrt{(1)}$
 - (c) Nitrogen (II) oxide is oxidised to Nitrogen (IV) oxide which is a pollutant. $\sqrt{(1)}$

- 18. (a) Water $\sqrt{(1)}$
 - (b) Bubbles of gas $\sqrt{(\frac{1}{2})}$ and a white ppt $\sqrt{(\frac{1}{2})}$ CO_2 . $\sqrt{(\frac{1}{2})}$ reacts to give $CaCO_3$ $\sqrt{(\frac{1}{2})}$
- 19. (a) These are different forms carbon in the same physical state. $\sqrt{(1)}$
 - (b) The hexagonal graphite rings have weak Van der Waals forces between the layers that allow the layers to slide over each other $\sqrt{(1)}$ while in diamond the atoms are held by strong Covalent bonds. $\sqrt{(1)}$
- 20. (a) The atomic radii increase with increase in atomic number. This is due to increase in energy levels. $\sqrt{1}$
 - (b) The group II elements have more protons than group I elements $\sqrt{(1)}$ hence this increases the nuclear attraction for the outer electrons. $\sqrt{(1)}$
- 21. (a) Cu^{2+} $\sqrt{(1)}$ or copper ions
 - (b) Cl^{-} $\sqrt{(1)}$ and OH^{-} $\sqrt{(1)}$
- 22. (a) Copper pyrites $\sqrt{1}$ chalcocite, malachite
 - (b) To concentrate the ore $\sqrt{(1)}$
 - (c) Brass $\sqrt{\binom{1}{2}}$ - Batteries $\sqrt{\binom{1}{2}}$
- 23. (a) $100 25 = 75 \text{ cm}^3$ $\sqrt{1}$
 - (b) $CxHy + O_2 \rightarrow CO_2 + H_2O$

$$15 \text{ cm}^3$$
 75 cm^3 45 cm^3 $\sqrt{(1)}$

1 5 3

CxHy +
$$5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

$$x = 3$$
 $H = 8$

 C_3H_8 $\sqrt{(1)}$

24.
$$Ca(NO_3)_2 \rightarrow Ca^{2+} + 2NO_3^{-}$$
 $\sqrt{(1)}$

RMM of $Ca(NO)_2 = 164 \qquad \sqrt{\frac{1}{2}}$

Concentration of Ca(NO₃)₂ = 4.1 g/l $\sqrt{\binom{1}{2}}$

Molarity =
$$\frac{Conc. in g/l}{RMM}$$

$$= \frac{4.1}{164}$$

$$= 0.025M \qquad \sqrt{\frac{1}{2}}$$

$$\begin{array}{lll} 1 \; \text{mole} \; \text{Ca(NO3)2} & \equiv & 2 \; \text{moles Nitrate} \\ 0.025 \; \text{m} & \equiv & 2 \; \times \; 0.025 \\ 0.05M & \sqrt{\binom{1}{2}} & \end{array}$$

- 25. It would remain unchanged $\sqrt{(1)}$ There is no water to form hypochlorous acid $\sqrt{(1)}$
- 26. When aqueous sodium chloride is added to Ca^{2+} . There is no ppt $\sqrt{1}$ while a white ppt is formed when aqueous sodium chloride is added to a solution containing Pb^{2+} . $\sqrt{1}$
- 27. (a) N. $\sqrt{1}$ being a weak acid provides few H⁺ to be neutralised by OH⁻ hence there is a slight increase in temperature. $\sqrt{1}$

$$\text{(b)} \qquad \text{CH$_{3}$COOH$_{(aq)}$} + \text{KOH$_{(aq)}$} \quad \rightarrow \qquad \text{CH$_{3}$COOK$_{(aq)}$} + \qquad \text{H$_{2}$O$_{(l)}$} \qquad \qquad \sqrt{} (1)$$

- 28. (a) Experiments 1 and 3. $\sqrt{(1)}$
 - (b) In experiment 1, the ions in K_2CO_3 are tightly held in position and cannot move $\sqrt{1}$ while sugar solution does not have ions that can carry a current in solution. $\sqrt{1}$

29.
$$\frac{1}{1}H$$
 mass 18 $\sqrt{(1)}$

$$\frac{2}{1}H$$
 mass 20 $\sqrt{1}$