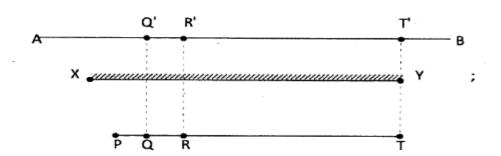
PHYSICS PAPER 2

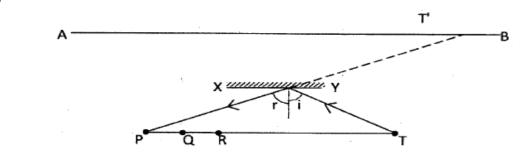

ANSWERS

KCSE 2012

Combined by Schools Net Kenya and Coordinated by KENPRO, Macjo Arcade, 4th Floor, Suite 15E, Off Magadi Road, Ongata Rongai

|Tel: +254202319748 | E-mail: infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

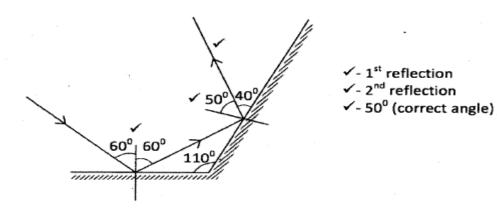
1. (a)



(1 mark)

(b) T and R;

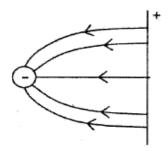
(1 mark)


(c)

Reflected ray from T and R moves towards P;

(1 mark)

2.



(3 marks)

3. $V + V + \frac{V}{2} = \frac{5V}{2}$ $\frac{5V}{2} = 15 \text{ V} \checkmark$ V = 6V $\therefore \quad \frac{V}{2} = \frac{6}{2} = 3\text{ V} \checkmark$

(2 marks)

4.

Check correct direction of field lines.

(2 marks)

5. Refractive index = $\frac{\text{real depth}}{\text{apparent depth}}$

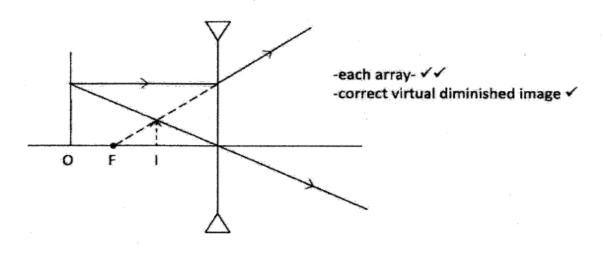
$$= \frac{40}{30} \quad \checkmark$$

= 1.33 √

(3 marks)

β and γ rays;

(1 mark)


7. L - south pole;

(1 mark)

 UV light ejects electrons by photo electric; emission reducing the negative charges;

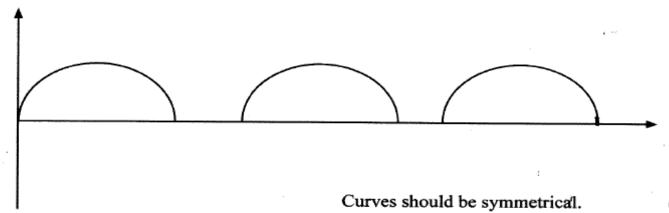
(2 marks)

9.

(3 marks)

(ii) Rectilinear propagation.

F; correct direction


(1 mark)

(1 mark)

11.

Alternating current can be stepped up, or enhances reduced power losses; l2. (1 mark)

13.

(1 mark)

SECTION B

4. (a) (i) amplitude =
$$5 \text{ cm}\sqrt{}$$

(1 mark)

(4 marks)

(ii)
$$T = 20s\sqrt{f}$$
$$f = \frac{1}{T}\sqrt{f}$$

$$f = \frac{1}{20} = 0.05 \text{ H}_2 \sqrt{$$

$$\lambda = \frac{20}{0.05} \sqrt{}$$

(iii)

 $V = \lambda f \sqrt{ }$

400 m √

(3 marks)

- (b) (i) Waves at Q are in phase √ so there is constructive interference. √ (2 marks)
 - (ii) Waves are out of phase hence destructive interference. √ (1 mark)
 - (iii) Interference pattern would disappear. √ (1 mark)
- 15. (a) (i) $V = IR\sqrt{10I}$ $I = 0.15A\sqrt{10I}$ (3 marks)
 - (ii) bulb = $0.1A\sqrt{R \times 0.1 = 1.5\sqrt{R} \times 0.1 = 1.5\sqrt{R}}$ $R = 15\Omega\sqrt{R}$ (2 marks)
 - (b) (i) the resistance of the bulb would increase;
 - (ii) Current is higher hence increases; temperature increased temperature results in increased resistance; (2 marks)
 - (c) Number of units = $(0.1 \times 10 + 0.06 \times 10 + 0.03 \times 10)$ = 1.9 units;

Cost =
$$1.9 \times 40 \times 7$$
;
= Ksh 5.32; (3 marks)

- 16. (a) (i) Pointer deflects upto a certain; maximum value and then returns to zero; (2 marks)
 - (ii) There is a deflection in the opposite direction then back to zero; As Flux in A falls, flux in B also falls and causes induced e.m.f in the opposite directions; (2 marks)
 - (b) (i) Current in the primary is constantly changing its direction; so that the resulting flux (which link coils) is constantly changing its direction. Therefore alternating e.m.f is induced in the secondary coil; (2 marks)

(ii)
$$\frac{Vs}{Vp} = \frac{Ns}{Np};$$
$$\frac{Vs}{240} = \frac{200}{1000};$$
$$Vs = 48V;$$

(3 marks)

(iii) Efficiency =
$$\frac{\text{Power output}}{\text{Power input}} \times 100\%;$$

=
$$\frac{\text{IsVs}}{\text{IpVp}} \times 100\%$$

= $\frac{0.8 \times 48}{0.2 \times 240} \times 100\%$;
= 80%;

(3 marks)

17. (a) (i) The image diminishes (becomes smaller);

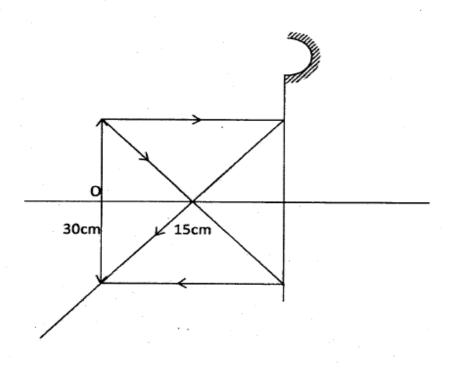
(1 mark)

(ii)
$$m = 1 \Longrightarrow \frac{V}{u} = 1;$$

$$V = u = 40 \text{ cm};$$

(2 marks)

(iii)
$$u = 25$$


$$m = \frac{v}{u}$$

$$\frac{v}{25} = 4;$$

$$V = 100 \text{ cm};$$

(3 marks)

(b)

(3 marks)

(c) A bulb/lamp placed at principal focus will give a wide parallel beam;

(1 mark)

18. (a) (i) To produce electrons; by thermionic emission; (2 marks)

(ii) To accelerate the electrons to give them enough K.E. to produce X-rays at the anode;; (2 marks)

- (iii) To absorb stray X-rays, thus protecting the operator from those rays; (1 mark)
- (b) Increases K.E. of electrons and hence causes X-rays of higher frequency; (1 mark) OR
 - X ray are more penetrative
 - X rays of shorter wavelength.
- (c) E = hf;= $6.63 \times 10^{-34} \times 7.5 \times 10^{14}$ = $4.97 \times 10^{-19} J;$

K.E =
$$4.97 \times 10^{-19} \ 4.0 \times 10^{-19}$$
;
= 0.97×10^{-19} J;

(4 marks)