1.

(a)

- Bubble each through acidified potassium dichoromate (VI) √1 with ethene the (b) solution changes from orange to green $\sqrt{\frac{1}{2}}$ while in ethane the solution remains orange. $\sqrt{1/2}$
 - Bubble each through acidified Potassium manganate(VII) √1 with ethene the solution changes from purple to $\sqrt{\frac{1}{2}}$ colourless while in ethane the solution remains purple. √1/2
 - Add a few drops of bromine water √1 with ethene the solution changes from orange/ brown $\sqrt{\frac{1}{2}}$ to colourless, while in ethane the solution remains orange / brown. $\sqrt{\frac{1}{2}}$
 - Ethene burns with yellow or sooty flame. Ethane burns with non-luminous or blue flame.

Choose any 2

Concentrated sulphuric (VI) acid or Al₂O₃ or H₃ PO₄. √1 (c) (i)

(ii)
$$\begin{array}{c} \begin{array}{c} CH - CH_2 \\ \\ CH_3 \end{array} \end{array} \begin{array}{c} \bigcirc \\ \swarrow \end{array}$$

(iii)
$$2CH_3CH_2COOH + Na_2CO_3 \longrightarrow 2CH_3CH_2COONa_{(aq)} + CO_{2(g)} + H_2O$$
 (1)

(iv)
$$2CH_2CH_2CH_2OH + 9O_2 \longrightarrow 6CO_2 + 8H_2O$$
 (1)

Moles of
$$CO_2 = \frac{18}{24}$$

Moles of
$$CH_3CH_2CH_2OH = \frac{18}{24} \times \frac{1}{3}$$
 (½)

R.M.M. of CH₃CH₅CH₅OH = $60 (\frac{1}{2})$

Mass =
$$\frac{18}{24} \times \frac{1}{3} \times 60 = 15 \text{ g}$$
 (½)

- $C\sqrt{1}$ has the smallest atomic radius and is the most electronegative element in the 2. (a) periodic table. $\sqrt{1}$ / as one traverses the period number of protons increases hence the nuclear attraction increases.
 - $AB_2/AB/CO_2$ or $CO \sqrt{1}$ Covalent bond $\sqrt{1}$ (b) (i)
 - (ii)

(ii)
$$C_{2(g)} + 2H_{(aq)} \longrightarrow 2C_{(aq)} + H_{2(g)} \sqrt{1}$$

- (d) F has a giant atomic √½ structure with strong √½ covalent bond which is strong and difficult to break hence high melting point. While G although it exhibits covalent bond it has simple √½ molecular structure with weak van der waal's forces between its molecules √½ hence the low melting point.
- (e) $D_2O\sqrt{\frac{1}{2}}$ and $D_2O_2\sqrt{\frac{1}{2}}$

- (a) (i) Concentrated √1 sulphuric (VI) acid.
 - (ii) Potassium nitrate √1
 - (iii) To condense the fumes or vapour of nitric (V) acid into liquid √1
 - (b) (i) Nitric acid (V) will corrode the rubber $\sqrt{1}$
 - (ii) The reaction produces nitrogen monoxide (colourless) $\sqrt{\frac{1}{2}}$ which is oxidised by oxygen from the air to form nitrogen(IV) oxide. $\sqrt{\frac{1}{2}}$
 - (c) (i) Water
 Alkanes
 Biogas
 Water gas

(ii)
$$NH_3 + HNO_3 \longrightarrow NH_4NO_3 \sqrt{1}$$

Mass of $NH_4NO_3 = 80 \sqrt{\frac{1}{2}}$

either

Moles of NH4NO₃ =
$$\frac{4800}{80} \times 10^3 = 6 \times 10^4$$

Moles of NH₃ = $6 \times 10^4 \frac{10^4}{2}$
Mass of NH₃ = $\frac{6 \times 17 \times 10^4}{1000}$

= 1020 kg

(iii) Explosives eg. T.N.T.

Production of polymers (terylene)

Textile dyes.

Manufacture of drugs

- 4. (a) Surface area/particle size $\sqrt{1}$.
 - (b) (i

(iii)
$$PbCO_{3(s)} + 2HNO_{3(aq)} \longrightarrow Pb(NO_3)_2 \sqrt{1 + CO_{2(g)} + H_2O_{(l)}}$$

- (c) With hydrochloric acid an insoluble lead chloride is formed, $\sqrt{\frac{1}{2}}$ which coats the lead carbonate $\sqrt{\frac{1}{2}}$ preventing the reaction between the acid and the carbonate from proceeding. $\sqrt{1}$
- (d) The reaction would shift to the left changing the solution from colourless to yellow/ orange √1. Addition of HCl creates excess H⁺ which disturbs the equilibrium so it shifts to the left to get rid of the excess H⁺ ions. √1
- 5. (a) (i) The anode is $X \cdot \sqrt{1}$ Since hydrogen is liberated at the cathode which is $Y \cdot \sqrt{1}$

(ii)
$$4OH_{(aq)} \longrightarrow 2H_2O_{(l)} + O_{2(g)} + 4e\sqrt{1}$$

(iii) The hydrogen ions and hydroxide ions which form water (1) are discharged at the electrodes leaving $MgSO_4$ concentrated. The amount of water electrolysed is more than the amount of water formed at the anode. $\sqrt{1}$

- (iv) Blue litmus remains $\sqrt{\frac{1}{2}}$ blue while the red litmus remains red $\sqrt{\frac{1}{2}}$. Indicating that the solution is neutral. $\sqrt{1}$
- (b) Quantity of electricity = $0.3 \times 30 \times 60$ = $540 \sqrt{1}$ Oxygen requires 4 Faradays $\sqrt{\frac{1}{2}}$ of electricity

$$\begin{array}{rcl}
24 \text{ dm}^3 & = & 4 \times 96500 \sqrt{\frac{1}{2}} \\
? & = & 540
\end{array}$$

$$\frac{24 \times 540}{4 \times 96500} = 0.32 \text{ dm}^3$$

- (c) Electroplating Purification of metals
- 6. (a) (i) $Cu^{2+}\sqrt{1}$
 - (ii) $CuCO_3 \sqrt{1} / ZnSO_4 \sqrt{1}$

(b)
$$Ba^{2+}_{(aq)} + SO_4^{2-} \longrightarrow BaSO_{4(s)} \sqrt{1}$$

- (c) The solution changes from blue to colourless √1 and a brown solid is formed. √1 The magnesium which is above copper in the reactivity series displaces the copper ions √1 from the solution. Apparatus become warm. The reaction is exothermic.
- (d) (i) Add nitric (V) acid to $\sqrt{\frac{1}{2}}$ lead oxide, filter $\sqrt{\frac{1}{2}}$, add a soluble sulphate/ sulphuric acid to the filtrate $\sqrt{\frac{1}{2}}$. Filter $\sqrt{\frac{1}{2}}$, and wash residue with distilled water $\sqrt{\frac{1}{2}}$ to remove traces of the filterate, then dry residue between $\sqrt{\frac{1}{2}}$ filter papers /oven.
 - (ii) Determine the melting $\sqrt{1}$ point, if it is pure the melting point will be constant. $\sqrt{1}$
- 7. (a) (i)

(ii) Potassium Manganate (VII) $\sqrt{1/2}$ and remove heat $\sqrt{1/2}$.

PbO₂ and heat OR CaOCL₂ No heating.

(iii) I.
$$2\text{Fe}_{(s)} + 3\text{Cl}_{2(g)} \xrightarrow{2} 2\text{FeCl}_{3(s)}$$
 (1)

II.
$$3Cl_{2(g)} + 6NaOH_{(aq)} \longrightarrow NaCl_{(aq)} + NaClO_{3(aq)} + 3H_2O_{(l)}$$
 (1)

Mass 0.07 1.12
RAM 35.5 16
Moles
$$0.07 \frac{1.12}{35.5} \frac{1.12}{16} \frac{0.02}{0.02} \frac{0.07}{0.02} \frac{1}{0.02} \frac{1}{2} \frac{7}{2}$$
2 : 7

Empirical formula Cl₂O₇ √1

(c) Sterilising drinking water supplies √
Manufacture of hydrochloric acid √
Manufacture of plastics √
Manufacture of chloroform √
Manufacture of bleaching agents √

(Any 2)