30.16 METALWORK (445)

30.16.1 Metalwork Paper 1 (445/1)

- 1. (a)
- To protect eyes.
- To protect feet.
- To protect hands.
- To protect clothes .

 $(4 \times \frac{1}{2} \text{ marks})$

(b) **Public**: are manufacturing industries which are either partially or wholly owned by the government. **Private**: are industries owned by individuals (sole proprietor) or a group of individuals.

(2 marks)

- 2. (a)
- Length.
- Cut.
- Shape. (cross section)
- Grade.

 $(3 \times \frac{1}{2} \text{ marks})$

- (b) (i) Cross cut
 - Cutting square holes.
 - Making slots.
 - Making key ways.
 - Making channels.
 - (ii) Half round
 - Filing flat surfaces.
 - Filing concave surfaces.marks)

 $(Anv 4 \times \frac{1}{2})$

- 3. (a)
- Drawing circles and radii where ordinary compasses are too small.
- Bisecting long lines.
- Transfer of measurements.
- Marking parallel lines to an edge.
- Stepping equal distances.

(Any $4 \times \frac{1}{2}$ marks)

(b)

(1 1/2

marks)

- 4. **Physical**:-Characteristics of metal which do not influence the strength of metal for example:- Colour, density, conductivity. **Mechanical**:- Characteristic of metal which influence its strength for example:- Hardness, turfness, brittleness, malleability, elasticity etc. **(4 marks)**
- 5. (a)
 - (i)

- *Backfire*:-a condition whereby the flame momentarily recedes back into the tip before being expelled with a loud sound.
- Causes:-
 - Weak acetylene frame.
 - Leaks.
 - Overheated torch.
 - Dirty tip.
 - Tip coming into contact with molten pool.

(Any $2 \times \frac{1}{2} = 1$ marks)

(ii)

- Flashback:- the torch stays lit instead of expelling the frame. It tends to travel in the torch body.
- Causes:-
 - Improper pressures.
 - Faulty mixing chamber.
 - Overheating of torch.
 - Faulty tip.
 - Kinked hoses.marks)

 $(Any \ 2 \times \frac{1}{2} = 1)$

6.

(i) Taking external measurements

(1 1/2

marks)

(ii) Taking internal measurements

(1 1/2

marks)

(iii) Taking depth measurements

marks)

(iv) Taking stepped measurements

marks)

7.

Punching on first side using face of the anvil

(3 marks)

(1 1/2

(1 1/2

8.	(a)	 Both use - different working temperature. different filler rod. Soldering - different flux. Brazed joint is stronger than soldered. 	(2 marks)
	(b)	 By bending and flattening. By wire edging (bend over a wire and retain it). By heading (bend over wire and remove it). marks) 	(3
9.	(a)	 Pop rivet faster to install than snap rivet. Pop rivet is done from only one side. marks) 	(2
	(b)	 Protects surfaces from damages. Provides additional beauty. Protection from corrosion/rusting. marks) 	(1 ½
10.			

(5 marks)

11.

12. (a)

(5 marks)

(b) (i)

- Mark out the development as shown in the diagram.
- Cut and file to shape and size.
- Using a mallet and folding bars, bend the two sides.
- Bend the back over the sides
- Bend the flaps.
- Deburr the work piece.

(ii)

- Cut the required length of the flat bar.
- From a loop (eye) on one end of the handle.
- Bend the second end to correct shape and angle.
- Deburr the handle.

(iii)

- Clean the surfaces to be braced.
- Align the body and handle and lamp together.
- Open the cylinders and set the gas to correct pressure.
- Light and set the torch to correct flame.
- Heat the brazing rod and dip it into flux.
- Heat the joint to melting point of the rod.
- Braze the joint.
- Put off the flame.
- Clean the joint to remove excess flux.
- Shut off the cylinders and release the system pressure.

(10

marks)

- 13. (a) (i) Alloy of tin and lead: Should have:
 - Low melting temperature.
 - Low surface tension.
 - High capillarity resistance to corrosion.
 - (ii) Cast iron: Should be:
 - Self lubricating.
 - Hard surface.
 - Easy to make.
 - (iii) High speed steel: Should be:
 - Resistance to rust and wear.
 - Retain hardness even at high temperature.

Furniture, fences, gates (iii)

Steel structures and frames

(c) Bluing:- A method of finishing metal articles using heat to achieve a corrosion resistant surface. Done by heating until colour changes to blue then dip the work into light oil and allow (2 marks)

Lacquering:- A process of metal finishing using lacquer for preservation and beauty. The types of lacquer used include hot, gum cellulose and synthetic and is applied using a brush, dipping or spraying. (2 marks)

Planishing:- Is a process of finishing by making even decorative dents on sheets metal using a planishing hammer and stake. The process includes annealing, picking buffing and cleaning.

(2 marks)

(3×11/2 marks)

14. (a) (i) Shank diameter
$$\emptyset = 1\frac{1}{2}$$
 thickness = $\frac{3}{2} \times 4 = 6$ mm

(b)

(ii) Shank length =
$$2 \times \text{thickness} + \frac{1}{2}\emptyset = (2 \times 4) + (\frac{2}{3} \times 6) = 8 + 9 = 17$$

(iii) Edge distance A = $1\frac{1}{2}D = \frac{3}{2} \times 6 = 9$

(iv) pitch distance =
$$3D = 3 \times 6 = 18$$
 (6½ marks)

(b) Strength of the joint.

- Thickness of the joint.
- Appearance.

Where used. $(1\frac{1}{2})$ marks)

(c) Mark the holes and drill one hole on cover plate.

- Drill a hole on one of the plates to be joined.
- Debur the plates.
- Cut the rivet to correct size.
- Align the pieces and insert rivet.
- Close the plates using rivet set.
- Spread the tail of the rivet shank.
- Form the head with ball pen.

- Finish with rivet snap.
- Drill the second hole and rivet.
- Align the second plate.
- Drill the holes for second plate.
- Rivet the second plate.
- Finish. $(14\times\frac{1}{2} \text{ marks})$

15. (a)

- Cold forging procedures better finish than hot forging.
- Cold forging work hardens and leaves the work stressed.
- Cold forging requires ductile material and of small cross-section unlike hot forging.

(3 marks)

(b) (i)

Eye: π D where D=20+3+3=35

$$\pi 35 = \frac{22}{7} \times 35 = 110$$

Straight part: $120 - \left(\frac{22}{7} + 6\right) = 102 - 20.5 = 99.5$

Total length = 110+99.5=209.5 mm

(3 marks)

(ii)

- Mark the required for the eye.
- Bend the rod to 90°.
- Form the eye on anvil by start, further and closing.
- Hammer the eye on the anvil flatten.

(3 marks)

(iii)

- Hold the work piece in the vice.
- Chamfer the end to be threaded.
- Select the correct die M6.
- Fix the die in the die stock.
- Adjust the die to maximum opening.
- Fit the die square at the end of the bar.
- Apply cutting the thread.
- Continue cutting and reversing to beak the chips.
- Remove the die.
- Adjust the depth of the cut.
- Repeat thread cutting until the right depth is achieved.

(6 marks)