4.5 **PHYSICS (232)**

4.5.1 Physics Paper 1 (232/1)

SECTION A

1.

 $L = \frac{18.6 + 18.5 + 18.6 + 18.5}{4} \qquad \qquad \sqrt{(1)}$ $L = \frac{74.2}{4} = 18.55$ students should record 18.6 cm $\qquad \sqrt{(1)}$

- 2. 3.46 mm read from photograph. $\sqrt{(1)}$
- **3.** Weight = Mass x gravity

OR (kilograms is the unit of measuring the mass and does not depict the force of gravity)

- 4. (a) BC = Constant $\sqrt{(1)}$
 - (b) CD decreasing $\sqrt{(1)}$
- 5.

$$\frac{F}{A} = p \qquad \qquad \checkmark (1)$$

$$F = 5 \times 24 \qquad \sqrt{(1)}$$

- F = 120 N
- 6. Volume of drop = Volume of patch $\sqrt{(1)}$ Ad = V $\sqrt{(1)}$ d = $\frac{V}{A}$
- 7.Flask painted black absorbs more heat;
causing more expansion of air above S than above T;
hence S is pushed downwards and T upwards; $\sqrt{(1)}$
- 8.

$$50 x = 20 \times 1 \qquad \sqrt{(1)} \\ x = 20 \\ 50 \\ = 0.4 \text{ m} \qquad \sqrt{(1)}$$

9.

8 mm $\sqrt{(1)}$

11.
$$A_1 V_1 = A_2 V_2$$
 $\sqrt{(1)}$
 $\frac{V_2}{V_1} = \frac{A_1}{A_2}$ $\sqrt{(1)}$

=

12.

10.

13.	(a)	BC	-	Solid changes to liquid	$\sqrt{(1)}$		
	(b)	DE	-	Liquid changes to vapour	$\sqrt{(1)}$		

14. - Collisions / bombardment of particles $\sqrt{(1)}$ with air molecules which are in random motion.

SECTION B

- 15. (a) (i) Displacement = Area under graph = $20 \times 8 \text{ m}$ = 160 m (3 marks)
 - (ii) After point B,

(iii) F = ma = $\frac{0 - 20}{4} ms^{-2}$ = $-5 ms^{-2}$ = -10 N

(3 marks)

(b)

16. (a) (i) Force = 4 N $\sqrt{(1)}$

 $\sqrt{(1)}$

(ii) Since velocity is constant. (uniform speed)
$$\sqrt{(1)}$$

Resultant force is zero = Force downwards is equal to force upwards

(b) (i) M.A =
$$\frac{load}{Effort} = \frac{20}{4}$$
 $\sqrt{(1)}$

5
$$\sqrt{(1)}$$

(ii) V.R =
$$\frac{Effort \ dis \tan ce}{Load \ dis \tan ce}$$
; $\sqrt{(1)}$

$$\frac{40}{5}$$
; $\sqrt{(1)}$

4N

=

=

=

=

(iii) Efficiency =
$$\frac{M.A}{V.R} \ge 100\%$$
 $\sqrt{(1)}$

$$= \frac{5}{8} \times 100 \qquad \qquad \sqrt{(1)}$$

$$=$$
 62.5% $\sqrt{(1)}$

17. (a)
$$l_1 = 142$$
, $T_1 = 290$ K, $T_2 = 298$ K, $l_2 = ?$
 $\frac{l_1}{T_1} = \frac{l_2}{T_2}$ or $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\sqrt{(1)}$
 $l_2 = 142 \times \frac{298}{290}$ $\sqrt{(1)}$
 $= 145.9$ mm $\sqrt{(1)}$

(b) In the hot sun the temperature of the air increases; therefore the speed of the air $\sqrt{(1)}$ molecules increases hence the rate of collisions between the molecules and $\sqrt{(1)}$ tyre increases; The rate of change of momentum (pressure) $\sqrt{(1)}$ of the molecules also increases.

(c)	(i)	Heat lost			=	Heat gained			
		mLv + M Δ	θC_{steam}		=	$M \Delta \theta C_{_{_{Wa}}}$	ter	$\sqrt{(1)}$	
		0.01 Lv + 0.0)1 × 30) × 4200	=	0.1 ×	4200 × .	50	$\sqrt{(1)}$
		0.01 Lv	=	21000 -	1260		$\sqrt{(1)}$		
		Lv	=	$\frac{19740}{0.01}$					
			=	1.974 ×	10 ⁶ J Kg ⁻¹	K-1		$\sqrt{(1)}$	

(ii) - All the heat lost by the steam is not absorbed by the water alone.

- Reading the thermometer at wrong meniscus resulting in wrong temperatures.

18.	(a)	Friction between road and tyre. $\sqrt{(1)}$							
	(b)	Increas	$\sqrt{(1)}$						
	(c)	(i)	- Weig - Tens	ght sion	$\sqrt{(1)}$ $\sqrt{(1)}$				
		(ii)	(I)	f = 2 revolutions / sec					
				$T = \frac{2\pi}{\omega} = \frac{1}{f}$	$\sqrt{(1)}$				
				$f = \frac{\omega}{2\pi} = 2$	$\sqrt{(1)}$				
				$\omega = 2 \times 2\pi$					
				$= 4 \pi \operatorname{rad} S^{-1} = 12.56$					
				$\simeq 13 \text{ rad S}^{-1}$	$\sqrt{(1)}$				
			(II)	$T + mg = mr\omega^2$	$\sqrt{(1)}$				
				$T = mr\omega^2 - mg$					
				$= 0.2 \times 0.4 (16\pi^2) - 0.2 \times 10$	$\sqrt{(1)}$				
				= 10.63					
				= 10.6N	$\sqrt{(1)}$				

19.	(a)	(i)	(I)	Volum	e of w	ater disp	placed	=	$2 \times$	5		√ (1)	
								=	10 cr	n ³		$\sqrt{(1)}$	
			(II)	Mass	= Vo	lume ×	densit	У		$\sqrt{(1)}$			
					= 10	× 1							
					= 0.0	01 kg				$\sqrt{(1)}$			
				∴weig	ht = 0	0.01 ×	10			$\sqrt{(1)}$			
					= 0.1	Ν				$\sqrt{(1)}$			
		(ii)	Comb	ined we	ight	=	upthru	ıst					
						=	0.1 N					$\sqrt{(1)}$	
		(iii)	Weigh	t of liqu	id disp	olaced	=	0.1N					
			Mass of liqu		l displa	aced	=	0.01	kg	=	10 g	√ (1)	
			Volum	Volume of liquid di		placed	=	mas dens	ity	=	$\frac{10}{0.8}$		
										=	12.5 c	cm ³	$\sqrt{(1)}$
			∴ Lei	ngth sub	omerge	d	=	2 <i>l</i>	=	12.5			
			(C.S A	$A \times l$	= volu	me)							
				0.8 <i>l</i>	= 10					$\sqrt{(1)}$			
				l = -	$\frac{10}{0.8}$								
				= (5.25 cn	n				$\sqrt{(1)}$			
	(b) Use a narrower test tube.									$\sqrt{(1)}$			