ELECTROSTATICS II

1. Which diagram below best represents the electric field pattern between a positively charged conducting sphere and an earthed metal plate?

A.

B.

C.

D.

2. Two pairs of uncharged parallel plates are placed in a vacuum and are connected as shown.

A negative charge of magnitude q is placed on plate X. Plate Y is connected to earth. Which **one** of the following diagrams shows the distribution of charge on the plates?

- 3. Which of the following is the correct value of the electronvolt, measured in SI Units?
 - A. 1.6 x 10⁻¹⁹ N
 - B. 1.6 x 10⁻¹⁹ J
 - C. 9.1 x 10⁻³¹ N
 - D. 9.1 x 10⁻³¹ J
- **4.** Two identical spherical conductors X and Y are mounted on insulated stands. X carries a charge of +8.0 nC and Y carries a charge of -2.0 nC.

The two conductors are brought into contact and are then separated. Which of the following gives the charge on each conductor?

	Charge on X	Charge on Y
A.	0.0 nC	0.0 nC
В.	+8.0 nC	-2.0 nC
C.	+5.0 nC	+5.0 nC

D. +3.0 nC +3.0 nC

5. A 2.0 μF capacitor is charged to a potential difference (p.d.) of 50 V and a 3.0 μF capacitor is charged to a p.d. of 100 V.

Calculate the charge on the plates of each capacitor. Write your answers in the table below.

Capacitor	2.0 μF	3.0 µF
P.d.	50 V	100 V
Charge		

(2)

The capacitors are then joined together **in parallel** with their positive plates connected together.

What is the equivalent capacitance of this combination?

.....

[Total 3m]

- 6. A 3.0 mF and a 5.0 mF capacitor are connected in series with a 12 V battery.
- a. Find the equivalent capacitance.

[3m]

b. Find the charge on each capacitor.

[3m]

- c. Find the potential drop (or voltage) across each capacitor. 3m
- 7. This 8.0 μ F 6.0 μ F and 5.0 μ F capacitors are connected in series. Calculate the total capacitance for this arrangement.