Name	index No
	Candidate's Sign
	Date
232/3 2018	
PHYSICS	
PRACTICAL	
JUNE /JULY	

TIME: 2HRS 30 MINUTES

GATUNDU SOUTH FORM FOUR JOINT EVALUATION EXAMINATION 2018

INSTRUCTIONS

- Write you name, index number in the space provided above.
- Use the first 15 minutes of 21/2 hrs to study the questions properly.
- Marks are given for clear records of the observation accurately made, their suitability and the use made of them.

FOR EXAMINERS USE ONLY

QUESTION	MAX. SCORE	CAND. SCORE
1	20	
2	20	
Total	40	

QUESTION ONE

You are provided with the following;

- -a mounted wire gauge labelled N
- -a voltmeter
- A ammeter
- A switch
- two dry cell and a cell holder
- At least six connecting wires two with crocodile clips.
- a micrometer screw gauge.

Procedure

a. Using the a micrometer screw gauge determine the diameter d of the wire at some three different points

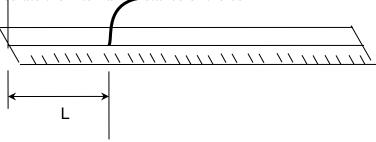
 $d_1 = \dots mm, d_2 = \dots mm, d_3 = \dots mm$

 $dav = \dots m. (2mks)$

b. Calculate the cross sectional area A of the wire in m² (2mks)

c. Set up the circuit as shown below.

d. Vary the length A g the croodile clip along the wire from (L = 0) and record the voltmeter and the ammeter in the table below. (5mks)


anninetei m	the table below.				(SIIIKS)
Length L (cm)	0	20	30	40	60
Current I (A)					
Voltage V (V)	(V				
	(1		

e. Plot the graph of voltage V against current I

(5mks)

f. Calculate the internal resistance of the cell

(4mks)

g. From the graph determine the EMF of the battery.

(2mks)

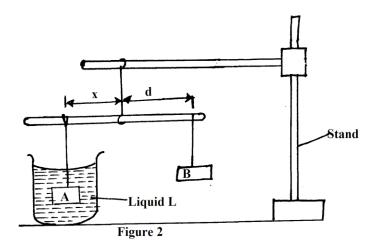
QUESTION TWO

This question has two parts A and B. answer both parts.

PART A

You are provided with the following:

- A meter rule
- Two identical 100g masses
- About 200ml of liquid L in 250ml beaker
- Three pieces of thread, each about half metre long.
- Stand with clamps
- Tissue paper.


Proceed as follows:

(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizontally. Record the position of the centre of gravity. G.

$$G = \underline{\hspace{1cm}} mm \tag{1mk}$$

NOTE: The metre rule should remain suspended at this point through out the experiment.

(b) Set up the apparatus as in figure 2 below.

Suspend the mass A at a distance x = 50mm. adjust the position of mass B until it balances mass A immersed in liquid L.

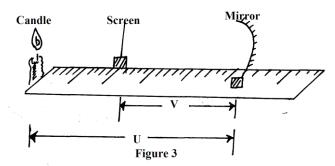
Record the distance d, of mass B from the pivot.

Repeat the same process for other values of x in table 2 below and complete the table. (3 mks)

x(mm)	50	100	150	200	250	300
x(cm)						
d(cm)						

(c) Plot a graph of d (y axis) against x (cm).	(5mks	Plot a graph of d (y axis) against x (cm).	c)
--	-------	--	----

$$S = \frac{F}{W},$$
 (e) Given where F is the apparent weight of object A in the liquid L and W is the actual weight of A, find:-


PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follow:

(f) Set up the apparatus as in figure 3 below.

- (g) Put the object at a distance u = 30cm from the mirror. Adjust the position of the screen until a sharp image is formed on the screen. Record the distance V.
- (h) Repeat procedure (b) above for the distance u = 40cm and record the new distance V. complete the table 3 below. (2mks)

U(cm)	V(cm)	$M=^{v}/_{u}$	(m+1)
30			
40			

$$f = \frac{V}{(m+1)}$$
, calculate the values of f hence determine the average value f_{av} : (3mks)