Name	Index No
Candidate signature	Date:

233/3 CHEMISTRY Paper 3 (PRACTICAL) July / August – 2018 Time: 2 Hours 15mins

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- Sign and write the date of examination in the spaces provided.
- Answer <u>all</u> the questions in the spaces provided.
- KNEC mathematical tables and non-programmable electronic calculators may be used.
- All working **must** be clearly shown where necessary
- Candidates should check whether the question paper to ascertain that all the pages are printed and that no questions are missing.
- Candidates should answer the questions in English

For Examiners Use Only

Question	Maxi. score	Candidate's score
1	24	
2	9	
3	7	
Total	40	

1. You are provided with:

- Sodium hydroxide solution **K**
- 0.128M hydrochloric acid solution L
- Carboxylic acid solution **M**

Solution N is prepared by diluting 25 cm³ of solution K with distilled water to 150 cm³ of solution.

You are required to;

- a) Standardize solution ${\bf N}$ with solution ${\bf L}$
- b) Determine the reaction ratio between sodium hydroxide solution **K** and the carboxylic acid solution **M**.

Procedure I

Fill the burette with solution **L**. Pipette 25cm³ of solution **N** into a clean conical flask. Add **two** drops of **phenolphthalein** indicator and titrate with solution **L**.

Record your results in the table below. Repeat the titration two more times and complete the table below.

Table I

	Ι	II	III
Final burette reading(cm ³)			
Initial burette reading(cm ³)			
Volume of \mathbf{L} used(cm ³)			

(4mks) (1mk)

a) Determine the average volume of solution L used

b) Calculate

- i) The concentration of sodium hydroxide in mole per litre in solution N (2mk)
- ii) The concentration of sodium hydroxide in moles per litre in solution K (2mk)

Procedure II

Using a clean burette, place 16 cm^3 of solution **M** into a boiling tube. Take its initial temperature and record it in the table below. Using a clean measuring cylinder, place 4 cm^3 of solution **K** in the boiling tube. Stir the mixture immediately with thermometer and record the maximum temperature reached.

Repeat the experiment with other set of volume of M and K to complete table II.

N/B: Rinse the thermometer and boiling tube after each experiment.

Table II

(6mks)

Volume of solution \mathbf{M} (cm ³)	16	12	8	6	4	2
Volume of solution \mathbf{K} (cm ³)	4	8	12	14	16	18
Final temperature (°C)						
Initial temperature (°C)						
Change in temperature ($\Delta \mathbf{T}$)						

- a) On the graph paper provided plot a graph of ΔT against volume of sodium hydroxide solution **K** (3mks)
- b) From the graph, determine the volume of sodium hydroxide, solution **K** required to neutralize the carboxylic acid (1mk)
- c) Calculate the volume of carboxylic acid solution **M** used for neutralization. (1mk)

d)	Calcula	ate:	
	i)	Ratio between the volumes of solutions \mathbf{K} and \mathbf{M}	(2mks)

ii) Concentration in moles per litre of carboxylic acid, solution **M.** (assume the volume ratio is the same as mole ratio) (2mks)

2. You are provided with:

- Solid Q
- Aqueous sodium hydroxide
- Dilute nitric (V) acid
- Wooden splint
- Potassium Iodide solution

Solid Q is **suspected** to be **lead** (**II**) **carbonate**.

- a) From the reagents provided, select and describe three tests that could be carried out **consecutively** to confirm if solid Q is **lead** (**II**) **carbonate**. Write the tests and expected observations in the spaces provided.
 - i)

Test 1	Expected observations
(1mk)	(1mk)

ii)

Test 2	Expected observations
(1mk)	(1mk)

iii)

Test 3	Expected observations
(1mk)	(1mk)

b) Carry out the tests described in (a) using solid Q and record the observations and inferences in the spaces provided

Test 1

Observations	Inferences
(½mk)	(½mk)

Test 2

Observations	Inferences
(½mk)	(½mk)

Test 3

Observations	Inferences
(½mk)	(½mk)

- 3. You are provided with solid **T**.Carry out the tests and write your observations and inferences in the spaces provided.
 - a) Place a third of solid **T** on a metallic spatula and burn it over a Bunsen burner flame

Observations	Inferences
(1mk)	(1mk)

b) Place the rest of solid **T** in a boiling tube. Add about **8 cm³** of distilled water. Shake the mixture well. Retain the mixture.

Observations		Inferences
	(½mk)	

Divide the mixture into four portions of 2cm^3 each.

i) To the first portion of 2cm³ of the mixture, add the **magnesium ribbon** provided.

Observations	Inferences
(½mk)	(½mk)

\mathbf{r}	
observations	Inferences
(½mk)	(½mk)

ii) To the second portion of the mixture, add about 1cm³ of **acidified potassium dichromate (VI)** solution and warm.

iii) To the third portion of the mixture, add 2 drops of **bromine water.**

Observations	Inferences
(½mk)	(½mk)

iv) Determine the **pH** of the mixture using the forth portion

Method used	Inferences
(1mk)	(½mk)