NAME	INDEX NO
SCHOOL	DATE
	CANDIDATE'S SIGNATURE

233/3 CHEMISTRY PAPER 3 FORM 4

JULY 2017

TIME: $2\frac{1}{4}HOURS$

Kenya Certificate of Secondary Education

MURANG'A COUNTY MOCK

END OF TERM II EXAMINATION QUESTIONS

INSTRUCTIONS: Answer all the questions in the spaces provided

1. You are provided with potassium manganate (VII)

solution A

solution B, containing 6.3 g' litre of dibasic acid H₂X.nH₂O

Solution C₁ containing 4.0g/litre of Sodium hydroxide solution.

You are required to determine:

- a) The value of n in H_2X . nH_2 O
- b) How the rate of reaction of solution A with solution B varies with change in temperature.

Procedure 1

Fill the burette with solution B . Pipette $\, 25 cm^3$ of solution C $\,$ into a conical flask and titrate solution B $\,$ with

Solution C using phenolphthalein indicator.

Record your results in table I below and repeat the titration to obtain consistent results:

Table 1.

Burette readings	1	2	3
Final readings (cm³)			
Initial readings (cm³)			
Volume of solution B used			
(cm ³)			

a)Determine the average volume of solution B used . (1mk)

b)Calculate the concentration of solution C in moles per litre.

$$(Na = 23.0, 16.0, H= 1.0)$$
 (1mk)

c) Given that the equation of the reaction taking place and R.F.M of X = 88

$$H_2 X + 2NaOH$$
 \rightarrow $Na_2 X + H_2O$ (aq) (aq) (l)

CaLculate

- 1. The number of moles of the dibasic acid solution B that reacted (2mks)
- ii) The number of moles of the dibasic acid solution B in 1000cm³ of solution. (1mk)

_

- iii) The R.F.M of the dibasic acid, hydrated. (1mk)
- iv) The value of n in the formula of the hydrated acid (0 = 16.0 H = 1.0) (2mks)

Procedure II

- $\underline{1}$.Using a measuring cylinder , place 10cm^3 portion of solution A into 5' test tubes placed in a test tube rack.
- ii) Clean the measuring cylinder and use it to place 10.0 cm³ of solution B into a boiling tube.
- iii) Insert a thermometer in the solution B in the boiling tube and place the boiling tube in the attains a

temperature of 40° C.

- IV) Remove the boiling tube from the water bath and place it in a test- tube rack and add the first portion of solution A. and at the same time start the stopwatch.
- V) Record the time taken for the purple colour and the mixture to decolourise in table II

VI))Repeat the experiment using 10cm^3 of solution B at 50° , 60° c, 70° c and 80° c. Record the time in the

Table. Complete the table by computing 1h/t sec -1.

Table II

Temperature of solution B	40	50	60	70	80
Time of colour to decolourise (seconds)					
1/t sec ⁻¹					

(5mrks)

- a)Plot a graph of 1/t (sec -1) against temperature. (3MKS)
- b) From the graph , determine the time taken for decolourisation of the mixture, if the temperature of solution

B was 65° C (1 MK)

C) How does the rate of reaction of potassium manganite (VII) with oxalic acid vary with temperature. (1mk)

 $2.\mbox{You}$ are provided with solid Q . Carry out the tests below and record your observations and inferences

In the spaces provided.

a) Strongly heat a spatula - end full of solid Q in a dry test - tube.

- 2 --

6.i) Place the remaining solid Q in a boiling tube. Add 10cm³of distilled water. Divide the solution Into five portions.

Observations ½ mk Inferences

½ mk

ii)To the first portion, add a	queous lead (II) nitrate solution	on .
Observations 1mk	1mk	Inferences
iii)To the second portion ad solution . Observ	d dilute nitric (V) acid follow rations 1mk	ed by barium nitrate Inferences
iv)To the third portion add	a few drops of sodium hydroxid	de until in excess.
Observations 1mk	1	Inferences mk
v) To the fourth portion add	d few drops of aqueous ammor	nia until in excess'
Observations ½ mk	⅓ mk	Inferences

vi) To the fifth portion add few drop	s HCL acid. Warm the content
Observations ½ mk	Inferences ½ mk
inferences.	rry out the tests and your observations and L on a metallic spatula and burn it using Bunsen
Observations ½ mk mk	Inferences ½
b)Place the remaining solid L in a te shake well. Retain the mixture for u Observations Inferences ½ mk	est tube . Add about 6cm³ of distilled water and ise in tests (C) ½ mk
c.i) To about 2cm³ of te mixture ad Observations 1mk	d a small amount of sodium hydrogen carbonate Inferences 1mk

ii) To about 1cm³ of and warm	the mixt	ture add 1cm^3 of acidified potassium dichromate (VI))
Observatio	ons 1mk	Inferences. 1mk	
ii))To about 2cm³ of tl	he mixtu	 ure add two drops acidified potassium manganite (V	′ II)
Observations	1mk	Inferences k 1 mk	