KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

MOI GIRLS ELDORET CHEMISTRY PAPER 1 TIME: 2 HOURS

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: <u>www.schoolsnetkenya.com</u> 233/1 CHEMISTRY PAPER 1 TIME: 2 HOURS

MOI GIRLS ELDORET KCSE TRIAL AND AND PRACTICE EXAM 2016

INSTRUCTIONS TO CANDIDATES:

- Write your name and Index number in the space provided above.
- Answer *all* the questions in the spaces provided.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators can be used.

Question	Maximum score	Candidate's score
Score 1 - 29	80	

1. Use the information in the table below to determine the relative atomic mass of copper. (2 marks)

Isotope	Fractional abudance
65 Cu	0.31
29	
63 Cu 29	0.69

2. Study the arrangement below and answer the question that follows. Lighted candle

Lighted candle		
	$\hat{\mathcal{Q}}_{1}$,	1
		Lime water

Explain what will be observed after some time.

(3 marks)

3. Briefly explain industrial application of the following processes.

(a) Crystallisation.

(1½ marks)

(b) Fractional distillation.

(1½ marks)

- Four solutions of pH 7, 2, 8.5 and 13 respectively were each reacted with calcium turnings.
 In which of the solutions would <u>hydrogen</u> gas be produced. Explain each case. (3 marks)
- 5. Study the information in the table below and answer the questions that follow.

ic arrangement	lius (nm)

- (a) Explain why the ionic radius of K^+ is greater than that of Na⁺. (1 mark)
- (b) Account for the difference in ionic radius of Mg²⁺ and Na⁺. (2 marks)
- Use the following equations to determine the heat evolved when aluminium metal is reacted with iron (III) oxide.
 (3 marks)

 $2AI_{(s)} + {}^{3}/{}_{2}O_{2(g)} \longrightarrow AI_{2}O_{3(s)}$; $\Delta H_{,} = -1673.6 \text{jKmol}^{-1}$

 $2Fe_{(s)} + \frac{3}{2}O_{2(g)} \longrightarrow Fe_2O_{3(s)}$; $\Delta H_2 = -836.8 \text{ kJmol}^{-1}$

- Describe how you would prepare a dry sample of zinc carbonate in the laboratory starting with zinc chloride solid.
 (3 marks)
- 8. The solubility of salt Y at 60°C is 40g/100g of water and 48g/100g of water at 100°C.
 (i) How much salt of Y would satulate 190g of water at 100°C.
 (ii) 150g of saturated solution of Y at 100°C is cooled to 60°C. Calculate the mass of Y that crystallizes out.
 (1 ½ marks)
- 9. Below are the bond dissociation energies of some elements.

Bond	Bond dissociation energy
C – C	343 kJmo ⁻¹
С-Н	414 kJmo ⁻¹
H-H	435 kJmo ⁻¹
с ——е	711 kJmo ⁻¹
(s) (g)	

Use this information to calculate the heat of reaction for:-

Volume of hydrogen Gas (cm³) ΑB

- (b) At the beginning of the experiment; the pH of the solution in container 'L' was about 14; at the end; the pH was found to be 2. Explain. (2 marks)
- 18. Ammonia gas was passed into water as shown below.

- (a) When a red litmus paper was dropped into the resulting solution; it turned blue. Give a reason to this observation.
- (b) What is the function of the funnel.
- 19. During purification of copper by electrolysis, 1.48g of copper were deposited when a current was passed through aqueous copper (II) sulphate for 2 ½ hours. Calculate the amount of current that was passed.

(Cu = 63.5; IF = 96500C) (3 marks)

- 20. Draw a dot (.) and cross (x) diagram to show bonding in carbon (II) oxide.
- Write the discharge equations (half equations) for the electrode reactions when molten sodium chloride is electrolysed using graphite electrodes.
 Anode

 (1 mark)
 (2 mark)
 (1 mark)
 (1 mark)
- 22. Study the energy diagram and then answer the questions that follow.

- (1 mark)
- (1 mark)

(2 marks)

- (a) What does ΔH_1 and ΔH_3 represent
- (i) ΔH_1 (1 mark)
- (ii) ΔH_3 (1 mark)
- (b) Write down the relationship between $\Delta H_{1(I)}$, ΔH_2 , and ΔH_3 . (1 mark)
- 23. Complete the diagram below to show how particles from a radioactive source can be distinguished from each other. Label your diagram clearly.

- 24. The diagram below represents a set-up that was used to react iron with water. Study it and answer the questions that follow.
 - (a) Write the equation for the reaction that takes place. (1 mark)
 - (b) Why should it not be advisable to use potassium in place of iron in the above set-up. (1 mark)
 - (c) The glass wool is heated prior to heating of iron. Explain this procedure. (1 mark)
- 25. The following diagrams show the structure of two allotropes of carbon. Study them and answer the questions that follow.

$$Cl_{2(g)} + 2e^{-} \rightarrow 2Cl_{(aq)}^{-}E^{\Theta}V = + 1.36$$

(a) Calculate the e.m.f of the following cell:

 $Zn_{(s)} / Zn^{2+}_{(aq)} / / 2Cl^{-}_{(aq)} / Cl_{2(g)}$

26.

27.

(2 marks)

- (b) Write down the equation for the overall cell reaction. (1 mark)
 28. (a) Suppose 180cm³ of a 2.0M solution is diluted to 1.0dm³. What will be the
 - concentration of the resulting solution.(2 marks)(b)Why is water not used to put off oil fires ?(1 marks)
- 29. When steam was passed over heated charcoal as shown in the diagram below hydrogen and carbon monoxide gases were formed.

- (a) Write the equation for the reaction which takes place. (1 mark)
- (b) Name one use of carbon monoxide gas which is also a use of hydrogen gas. (1 mark)

(1 mark)