| NAME:             | INDEX NO |
|-------------------|----------|
| SCHOOL:           | DATE     |
| CANDIDATE'S SIGN. |          |

| 232/2             |
|-------------------|
| PHYSICS           |
| PAPER 2 (THEORY)  |
| JULY /AUGUST 2014 |
| TIME: 2 HOURS     |

# **KISUMU WEST DISTRICT JOINT EVALUATION EXAM**

Kenya Certificate of Secondary Education (K.C.S.E.)

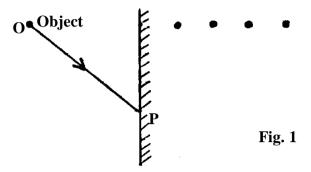
## PHYSICS

## PAPER 2 (THEORY)

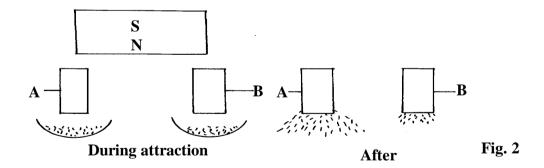
## **INSTRUCTIONS TO CANDIDATES:**

- Write your name, school and index number in the spaces provided above
- This paper consists of two sections, A and B.
- Answer all questions in section A and B in the spaces provided.
- All working **must** be clearly shown in the spaces provided.
- Scientific calculators and KNEC Mathematical tables may be used.

| SECTION | QUESTION | MAXIMUM SCORE | CANDIDATE'S SCORE |
|---------|----------|---------------|-------------------|
| Α       | 1-14     | 25            |                   |
| В       | 15       | 9             |                   |
|         | 16       | 12            |                   |
|         | 17       | 13            |                   |
|         | 18       | 10            |                   |
|         | 19       | 11            |                   |
|         | TOTAL    | 80            |                   |


#### For Examiners' Use Only

This paper consists of 12 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are Missing


### **SECTION A - 25 MARKS**

#### Answer all questions in this section

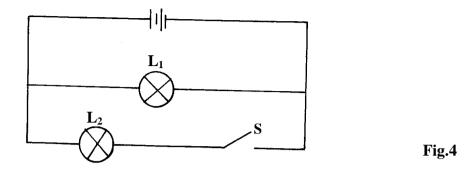
1. Figure 1 below shows an object **O** placed in front of a plane mirror. A ray of light is drawn coming object **O** and striking the mirror at **P**. After striking the mirror, the ray of light is reflected.



- (i) Which of the four dots represent correct position of the image of  $\mathbf{O}$ ? Label this dot  $\mathbf{Q}$  (1mk)
- By drawing a line on the diagram above to represent the reflected ray at P, mark the angle of reflection and label it r.
- 2. A charged conductor is slowly brought near the cap of a positively charged electroscope. The leaf first collapses and then diverges. State the charge on the conductor (1mk)
- 3. Give a reason why it is necessary to leave the caps of the cells open when charging an accumulator
- Figure 2 below shows a simple experiment using a permanent magnet and two metal bars A and BPut close to the iron filings.

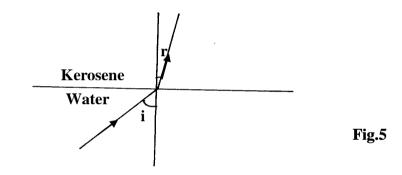


State with a reason which bar is made from a soft magnetic material. (2mks)


Figure 3 below shows two parallel current carrying conductors P and Q placed close to one another.
 Current flows in the opposite directions.



(1mk)


(1mk)

6. Figure 4 below shows two identical lamps  $L_1$  and  $L_2$  connected to a battery.



(a) Using an arrow, indicate on the diagram above the direction of the convectional current (1mk)
(b) State the effect if any, of closing switch S on L<sub>1</sub> (1mk)

7. Figure 5 below shows a ray of light incident on water-kerosene interphase.

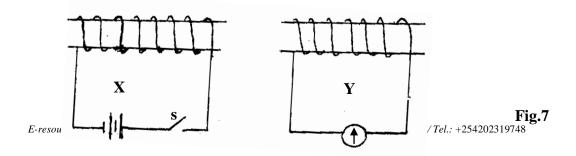


State which one of the two liquids has a higher absolute refractive index. (1mk)

8. The table in **figure 6** below shows part of the electromagnetic spectrum in order of decreasing wavelength

| А | В | INFRA RED | VISIBLE | С | D |
|---|---|-----------|---------|---|---|
|   |   | RADIATION | LIGHT   |   |   |
|   |   |           |         |   |   |

Figure 6


(1mk)

(1mk)

(a) How are waves **C** produced?

(b) State one use of the wave **D** 

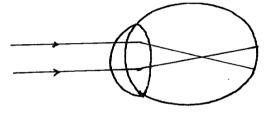
9. Figure 7 below shows two solenoids, **X** and **Y** close to each other.

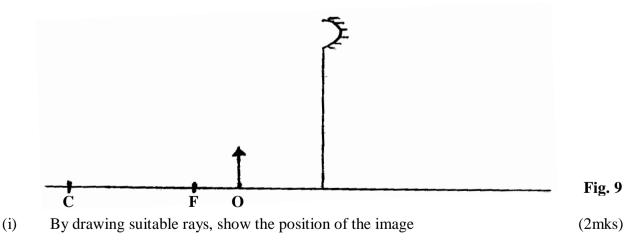


- (a) Name the process by which current is caused in **Y** by closing the switch **S**. (1mk)
- (b) Show on the diagram above the direction of current in **Y** as switch **S** closes. Use an arrow.

(1mk)

- 10. A house has a lighting circuit operated from a 240V mains supply. Four bulbs rated 40W 240V and six bulbs rated 100W 240V are switched on for 5 hours a day. Determine the monthly bill for the consumer given that the cost of electricity is at shs. 5.50 per unit.
  (*Take 1 month = 30 days and the standing charge is sh. 150*) (3mks)
- 11.,State two properties of X-rays similar to those of visible light.(2mks)
- 12. Explain why the tube of a cathode ray oscilloscope is made of thick glass walls. (2mks)
- 13.(a) Define the term work function(1mk)(c) Explain how the intensity of radiation affects the photo-electric effect(1mk)
- 14. Figure 8 below shows an eye defect





Fig 8

Use a ray diagram to show how the defect above could be corrected.


(2mks)

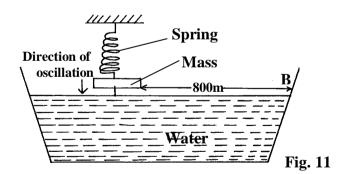
#### SECTION B - (55 MARKS)

15. (a) An object **O** stands on the principal axis of a concave mirror as shown in figure 9 below.



- (ii) Determine the magnification of the image formed (2mks)
- (b) In an experiment to determine the focal length of a concave mirror, a group of form two students collected some data and used the results to plot the graph shown in figure 10 below.




Using the graph above, determine:

| (i)  | The object position when the image position is 45 cm | (2mks) |
|------|------------------------------------------------------|--------|
| (ii) | Slope of the graph.                                  | (2mks) |

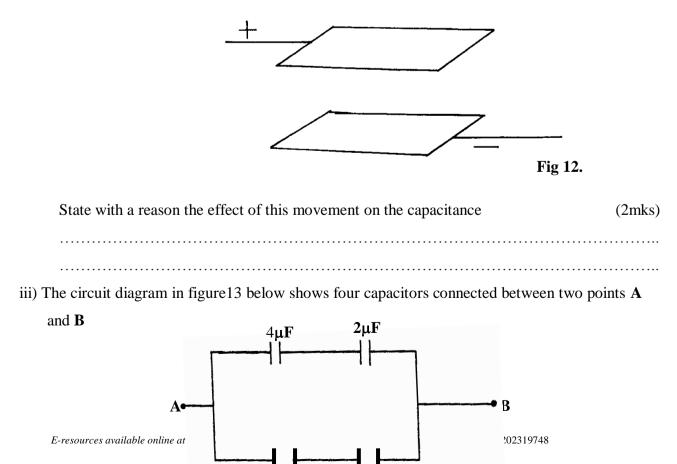
(iii) The focal length of the mirror given

$$\mathbf{m} = \frac{\mathbf{v}}{\mathbf{f}} - 1 \tag{1mk}$$

(a) Students set up a mass attached to a spring such that when it oscillates it taps on water surfacein a wide shallow tank as in figure 11 below.



The students measured time for 20 oscillations and found that the mass takes 36 seconds. Determine:

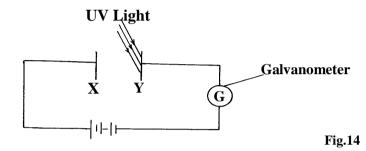

| (i) TI<br>(ii) | he periodic time of the mass<br>The frequency of the waves produced on the water surface                   | (2mks)<br>(1mk) |
|----------------|------------------------------------------------------------------------------------------------------------|-----------------|
| (iii)          | The speed of the waves if the students counted four ripples between the mass and end ${\bf B}$ of the tank | (3mks)          |
| (b)            | State any <b>two</b> factors that would increase the speed of sound in air                                 | (2mks)          |

- (c) An echo sounder of a ship received the reflected waves from a sea bed after 0.20s.
  - (i) Determine the depth of the sea bed if the velocity of sound in water is 1450m/s

(2mks)

(ii) When the ship above passes over a sunken reef, the echo sounder receives an echo after 0.16s. Determine the height of the sunken reef (2mks)

- 17. (a) (i)Define capacitance of a capacitor (1mk)
  - (ii) **Figure 12** below shows a pair of parallel plates of a capacitor connected to a battery.
    - The upper plate is displaced slightly to the left.



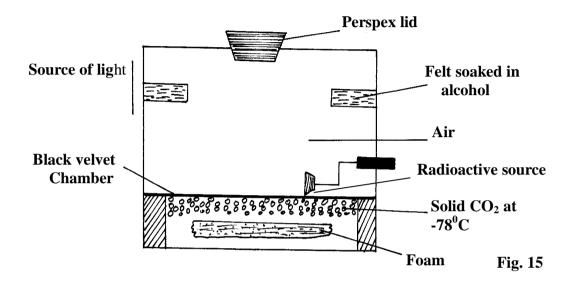

4uF

2µF

Fig 13

(d) Figure 14 below shows metal plates X and Y. Metal Y is illustrated by ultra-violet radiation.



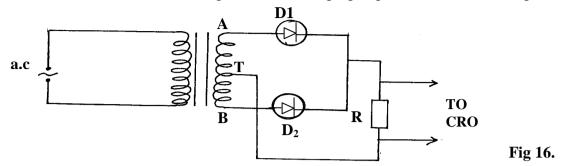

| (i) State the observation made on the galvanometer                                    | (1mk)  |
|---------------------------------------------------------------------------------------|--------|
|                                                                                       |        |
|                                                                                       |        |
| (ii) Explain the observation in (i) above                                             | (2mks) |
|                                                                                       |        |
|                                                                                       | - :    |
| (iii) A material has a work function of 2.0eV. Determine the largest wavelength of in | cident |
| radiation that can cause photo electrons to be emitted from its surface.              |        |
| $C = 3 \times 10^8 \text{ m/s}, h = 6.63 \times 10^{-34} \text{ Js}$                  | (4mks) |
| $1 eV = 1.6 x 10^{-19} J$                                                             |        |

| 18. | (a) Define Radioactivity | (1mk) |
|-----|--------------------------|-------|
|     |                          |       |
|     |                          |       |

(b) An element **R** decays by giving off an alpha particle. Complete the equation below showing the *E-resources available online at <u>www.schoolsnetkenya.com</u> / <i>Email: infosnkenya@gmail.com* / *Tel.:* +254202319748

$$^{236}_{72}R = {}^{a}_{b}V + {}^{4}_{2}He$$
  
 $a = \_$  \_\_\_\_\_  $b = \_$ 

(c) Figure **15** below shows the features of a diffusion cloud chamber used for detecting radiations from radioactive sources.

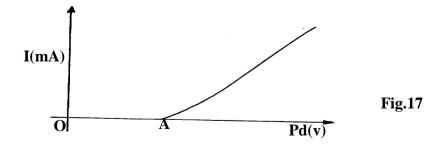



| (i) State the property of alcohol that makes it suitable for use in the chamber                                                                              | (1mk)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| (ii) State the function of the Perspex lid.                                                                                                                  | (1mk)  |
| (iii) Explain why the base velvet chamber is painted black                                                                                                   | (1mk)  |
| (iv) Explain how the radiation from the radioactive source is detected in the chamber.                                                                       | (4mks) |
|                                                                                                                                                              |        |
| (v) State <b>one</b> advantage of the cloud chamber over a charged leaf electroscope when used a                                                             |        |
| detectors of radiations<br><i>E-resources available online at <u>www.schoolsnetkenya.com</u> / Email: <u>infosnkenya@gmail.com</u> / Tel.: +254202319748</i> | (1mk)  |

.....

.....

19. A student connected a circuit as shown in figure 16 below hoping to produce a rectified out put




(a) Sketch the graph of the out put on the CRO screen

(1mk)

| (b) Explain how the output above is produced       | (2mks) |
|----------------------------------------------------|--------|
|                                                    |        |
| (c) Name other <b>two</b> uses of a junction diode | (2mks) |
|                                                    |        |
|                                                    |        |
|                                                    |        |

(e) Graph in figure 17 below shows a forward bias characteristic of a **P** - **N** junction



The depletion layer decreases from **O** to **A**. Explain what is meant by depletion layer. (2mk)

| (f) | (i) Define the term doping                                  | (1mk) |
|-----|-------------------------------------------------------------|-------|
|     |                                                             |       |
|     | (ii)Explain how doping produces a P-type semi-conductor. (2 | 3mks) |
|     |                                                             |       |
|     |                                                             |       |
|     |                                                             |       |
|     |                                                             |       |

#### **ANSWERS:**

Order a copy of answers from <u>www.schoolsnetkenya.com/order-e-copy</u> NB> We charge Kshs. 100 ONLY to meet website, e-resource compilation and provision costs