| Name          |     | Index No              |      |
|---------------|-----|-----------------------|------|
| Class         | Adm | Candidate's Signature | •••• |
| 233/2         |     |                       |      |
| CHEMISTRY     |     |                       |      |
| PAPER 2       |     |                       |      |
| JUNE          |     |                       |      |
| (THEORY)      |     |                       |      |
| TIME: 2 HOURS |     |                       |      |

## **KABARAK-SACHO-SUNSHINE JET EXAMINATION**

**KASSU - 2014** 

Kenya Certificate of Secondary Education (K.C.S.E)
233/2
CHEMISTRY
PAPER 2
(THEORY)
TIME: 2 HOURS

## **INSTRUCTIONS**

- a) Write your name and the Index Number in the spaces provided above.
- b) Answer **ALL** the questions in the spaces provided after each question.
- c) Use of Mathematical sets and electronic calculators may be used.
- d) All working should be clearly shown.

## **FOR OFFICIAL USE ONLY**

| QUESTIONS | EXPECTED SCORE | CANDIDATES SCORE |
|-----------|----------------|------------------|
| 1         | 08             |                  |
| 2         | 12             |                  |
| 3         | 09             |                  |
| 4         | 11             |                  |
| 5         | 12             |                  |
| 6         | 14             |                  |
| 7         | 14             |                  |
| TOTAL     | 80             |                  |

| 1 | a) | The electron arrangement of ions $A^{3+}$ and $B^{2-}$ are 2.8 and 2.8.8 respectively. Write down the electron arrangement of the elements A and B. (2marks) |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | b) | B                                                                                                                                                            |

| Element | Atomic number | Boiling point (°C) |
|---------|---------------|--------------------|
| K       | 3             | 1333               |
| L       | 13            | 2470               |
| M       | 16            | 445                |
| N       | 18            | -186               |
| P       | 19            | 774                |

| Р         |                 | 19             | 774             | ł             |                              |
|-----------|-----------------|----------------|-----------------|---------------|------------------------------|
| h eleme   | ent             |                |                 |               |                              |
| (i)       |                 | room tempera   | nture? Explain  |               | om temperature<br>(1mark)    |
| (ii)      | Does not f      | orm an oxide   | ? Explain.      |               | (1 mark)                     |
| <br>(iii) | Write dow<br>M. | n the equation | n for the react | tion between  | n elements K ar<br>(1 mark)  |
| <br>(iv)  |                 |                |                 |               | formed when answer (1 mar    |
| <br>(v)   | Select the      | most electrop  | ositive eleme   | nt. Explain   | (1 mark)                     |
| <br>(vi)  | Why the b       | oiling point o | f element L is  | s higher than | n that of elemen<br>(1 mark) |

with excess 0.2M Sulphuric (VI) acid in the presence of a catalyst in a conical flask placed on an electronic balance.



| (i)                               | Write a                                               | an equation for the reaction that took place.                                                                                                                                                                                                                                        | (1mark)                                                                                      |
|-----------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                   |                                                       |                                                                                                                                                                                                                                                                                      |                                                                                              |
| (ii)                              |                                                       | n why there is loss in mass.                                                                                                                                                                                                                                                         | (1mark)                                                                                      |
| (11)                              | •                                                     |                                                                                                                                                                                                                                                                                      | ` '                                                                                          |
| (iii)                             | Name t                                                | the catalyst used                                                                                                                                                                                                                                                                    |                                                                                              |
| , ,                               |                                                       | •                                                                                                                                                                                                                                                                                    |                                                                                              |
| (iv)                              | (a)                                                   | Sketch, on the same axes, the curves obtain                                                                                                                                                                                                                                          |                                                                                              |
|                                   |                                                       | I the same mass of zinc powder was t                                                                                                                                                                                                                                                 |                                                                                              |
|                                   |                                                       | a a maditi a ma                                                                                                                                                                                                                                                                      |                                                                                              |
|                                   |                                                       | conditions.                                                                                                                                                                                                                                                                          | (1mark)                                                                                      |
|                                   |                                                       | II no catalyst was used.  process, sulphur (IV) oxide is converted to S                                                                                                                                                                                                              | (1mark)<br>Sulphur (VI) oxide in                                                             |
| the ca                            | atalytic characteristic $_{(g)}$ + $O_{2(g)}$ What is | II no catalyst was used.  process, sulphur (IV) oxide is converted to S namber in which a dynamic chemical equilibrity $2SO_{3 (g)}$ ; $\Delta H = -97kJmol^{-1}$ s meant by dynamic equilibrium?                                                                                    | (1mark) Sulphur (VI) oxide in orium is reached. (1mark)                                      |
| the ca<br>2SO <sub>2</sub>        | ntalytic ch<br>(g) + O <sub>2</sub> (g<br>What is     | II no catalyst was used.  process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibration $\Delta S = 2SO_{3 (g)}$ , $\Delta H = -97kJmol^{-1}$                                                                                                        | (1mark) Sulphur (VI) oxide in orium is reached.  (1mark)                                     |
| the ca<br>2SO <sub>2</sub>        | atalytic character (g) + O <sub>2 (g)</sub> What is   | II no catalyst was used.  process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity $\Longrightarrow 2SO_{3 (g)}$ ; $\Delta H = -97kJmol^{-1}$ s meant by dynamic equilibrium?                                                                     | (1mark) Sulphur (VI) oxide ir orium is reached.  (1mark)                                     |
| the ca<br>2SO <sub>2</sub>        | otalytic character (g) + O <sub>2 (g)</sub> What is   | II no catalyst was used.  process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity ≥ 2SO <sub>3 (g)</sub> ;ΔH = -97kJmol <sup>-1</sup> s meant by dynamic equilibrium?                                                                            | (1mark) Sulphur (VI) oxide in orium is reached.  (1mark)                                     |
| the ca<br>2SO <sub>2</sub><br>(i) | what is                                               | II no catalyst was used.  process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity ≥ 2SO <sub>3 (g)</sub> ;ΔH = -97kJmol <sup>-1</sup> s meant by dynamic equilibrium?                                                                            | (1mark) Sulphur (VI) oxide in orium is reached.  (1mark)                                     |
| the ca<br>2SO <sub>2</sub><br>(i) | what is                                               | II no catalyst was used.  process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity ≥ 2SO <sub>3 (g)</sub> :ΔH = -97kJmol <sup>-1</sup> s meant by dynamic equilibrium?  and explain how each of the following would brium.                        | (1mark) Sulphur (VI) oxide in orium is reached.  (1mark)  I affect the position of (2 marks) |
| the ca<br>2SO <sub>2</sub><br>(i) | what is                                               | II no catalyst was used.  process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity ≥ 2SO <sub>3 (g)</sub> ;ΔH = -97kJmol <sup>-1</sup> s meant by dynamic equilibrium?  and explain how each of the following would rium.  crease in temperature. | (1mark) Sulphur (VI) oxide in orium is reached.  (1mark)  I affect the position of (2 marks) |

(2 marks)

b) Decrease in pressure.

|       | (iii)                                             | Equi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | librium e                              | xists between                   | n chromate and di                                                                                    | ichromate ions as                                              | s shown       |
|-------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|
|       | 2Cr(                                              | belov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W.                                     |                                 | $O_{7(aq)}^{2-} + H_2O_{(1)}$                                                                        |                                                                |               |
|       | (Yel                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (uq)                                   |                                 | 7(aq) 2 (1) ange)                                                                                    |                                                                |               |
|       | (1611                                             | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ded to the                             | lain the obsert<br>e above mixt | vation made whe                                                                                      | 1                                                              | (2 marks)     |
|       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                 |                                                                                                      |                                                                |               |
|       |                                                   | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                 |                                                                                                      |                                                                |               |
|       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                 |                                                                                                      |                                                                |               |
| 3 a). | it an                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | vs the standar                  | rd reduction poter follow (letter are                                                                | not the actual s                                               | ymbols for th |
| 3 a). | it an<br>elem                                     | d answe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er the qu                              | vs the standar                  | rd reduction poter<br>follow (letter are                                                             | not the actual signal $E^{\theta}$ (Vo.                        | ymbols for th |
| 3 a). | it an elem                                        | d answe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er the quo                             | vs the standarestions that f    | and reduction poter follow (letter are $2F_{(aq)}$                                                   | not the actual system $E^{\theta}$ (Vo. +0.54                  | ymbols for th |
| 3 a). | it an elem                                        | d answe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er the qu                              | vs the standarestions that f    | and reduction potential follow (letter are $\mathbf{2F}_{(\mathbf{aq})}$ $\mathbf{G}_{(\mathbf{s})}$ | not the actual signal $E^{\theta}$ (Vo.                        | ymbols for th |
| 3 a). | it an elem $F_{2,(g)}$ $G^{2+}$ $H^{2+}$          | d answe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er the que                             | vs the standarestions that f    | and reduction poter follow (letter are $2F_{(aq)}$                                                   | not the actual since $E^{\theta}$ (Vo. +0.54 -0.44             | ymbols for th |
| 3 a). | it an elem $F_{2,(g)}$ $G^{2+}$ $H^{2+}$ $2J^{+}$ | d answer and the depth of the d | 2 e - 2e | vs the standarestions that f    | rd reduction poter follow (letter are $2F_{(aq)}$ $G_{(s)}$ $H_{(s)}$                                | not the actual system $E^{\theta}$ (Vo. +0.54 -0.44 +0.34 0.00 | ymbols for th |

b) The diagram below shows the apparatus that can be used to electrolyse acidified water to obtain hydrogen and oxygen gases. Study it and answer the questions that follow.



| i.   | Identify the electrode at which oxidation takes place.                                                                               | (1 mark)  |
|------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      |                                                                                                                                      |           |
| ii.  | Give a reason why it is necessary to acidify the water.                                                                              | (1 mark)  |
|      |                                                                                                                                      |           |
| iii. | Explain why hydrochloric acid is not used to acidify the water.                                                                      | ` ′       |
|      |                                                                                                                                      |           |
|      |                                                                                                                                      |           |
|      | ng electrolysis of aqueous copper (II) sulphate 144750 C of electr<br>Calculate the mass of copper metal that was obtained (Cu=64;1F | •         |
|      |                                                                                                                                      | (2 marks) |

| 4. | a) | Describe how a sample of the solution could be tested to fine chloride ions. | d out if it contained (2 marks) |
|----|----|------------------------------------------------------------------------------|---------------------------------|
|    |    |                                                                              |                                 |
|    |    |                                                                              |                                 |

c)

b) 20g of potassium chloride were placed in a glass beaker and 40.0cm<sup>3</sup> of water were added. The beaker was heated until all the potassium chloride had dissolved and then allowed to cool. When crystals first appear the temperature was noted.

An extra 5.0cm<sup>3</sup> of water were added and the experiment was repeated. The results of experiment were as shown below.

| Experiment | Volume of water (cm <sup>3)</sup> | Temperature at which crystals formed ( <sup>0</sup> C) | Solubility in g/100g of water |
|------------|-----------------------------------|--------------------------------------------------------|-------------------------------|
| 1          | 40                                | 77                                                     | -                             |
| 2          | 45                                | 56                                                     | 44.5                          |
| 3          | 50                                | 40                                                     | -                             |
| 4          | 55                                | 26                                                     | 36.3                          |
| 5          | 60                                | 15                                                     | -                             |
| 6          | 65                                | 8                                                      | 30.8                          |

- I. Calculate the values of solubility of KCl which are missing from the table  $(1^{1}/_{2}marks)$
- II. On the grid provided plot the graph of solubility against temperature (X-axis) (3 marks)



| (i)   | What<br>water | is the effect of temperature on solubility of potassium chloride ? $ (^1/_2 mark) $                       | <sup>1</sup> / <sub>2</sub> mark)<br> |  |
|-------|---------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| (ii)  |               | the graph                                                                                                 | ••                                    |  |
|       | I.            | What is the solubility of potassium chloride at 60 <sup>o</sup> C? (1mark)                                |                                       |  |
|       | II.           | At what temperature will solubility be 35g/100g of water? (1mark)                                         |                                       |  |
|       | III.          | What is the mass of crystals deposited when the solution is coole from $70^{0}$ c to $40^{0}$ C? (2marks) |                                       |  |
| Belov | w is a si     | mplified diagram of the Down's cell used for the manufacture of                                           |                                       |  |

5 a) sodium. Study it and answer the questions that follow.



| i) | What material is the anode made of? Give a reason | (2 marks) |
|----|---------------------------------------------------|-----------|
|    |                                                   |           |
|    |                                                   |           |
|    |                                                   |           |
|    |                                                   |           |

What precautions are taken to prevent chlorine and sodium from reii) combining? (1 mark)

|     | iii)                                                                                                                                | Write an ionic equation for the reaction in which chlo                   | orine gas is formed. (1 mark)  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------|--|--|--|--|
|     |                                                                                                                                     |                                                                          |                                |  |  |  |  |
|     |                                                                                                                                     |                                                                          |                                |  |  |  |  |
| b). | In the Downs process above a certain salt is added to lower the melting point of sodium chloride from about 800°c to about 600°c.   |                                                                          |                                |  |  |  |  |
|     | i).                                                                                                                                 | Name the salt that is added.                                             | (1 mark)                       |  |  |  |  |
|     | ,                                                                                                                                   |                                                                          | (4 1)                          |  |  |  |  |
|     | ii).                                                                                                                                | State why it is necessary to lower the temperature.                      | (1 mark)                       |  |  |  |  |
| c). | Explain why aqueous sodium chloride is not suitable as an electrolyte for the manufacture of sodium in the Downs process. (2 marks) |                                                                          |                                |  |  |  |  |
|     |                                                                                                                                     |                                                                          |                                |  |  |  |  |
| d). | Sodiu                                                                                                                               | m metal reacts with air to form two oxides. Give the form                | nulae of the oxides. (1 mark)  |  |  |  |  |
|     |                                                                                                                                     |                                                                          |                                |  |  |  |  |
| e). |                                                                                                                                     | space below draw a well labled diagram that can be used by electrolysis. | l to extract zinc<br>(2 marks) |  |  |  |  |

6). Study the structural formula below and answer the questions that follow. I.  $CH_3\ CH_2\ COOH$ 

| (i)            | Give the systematic name of each                                    | ch compound.                        | (1 mark)        |
|----------------|---------------------------------------------------------------------|-------------------------------------|-----------------|
|                |                                                                     |                                     |                 |
|                |                                                                     |                                     |                 |
| (ii)           | Write the molecular formula of                                      | each compound.                      |                 |
| (iii)          | How does the boiling point of I compare to that of II? Explain.     |                                     |                 |
|                |                                                                     |                                     | (2 marks        |
|                |                                                                     |                                     |                 |
| (iv).          | A gas J is bubbled into concentre to the mixture then boiled to yie | -                                   | e gas J. (1mark |
|                |                                                                     |                                     |                 |
| (**)           | Draw the structural formula of t                                    |                                     |                 |
| (v)            | I in the homologous series                                          | _                                   | (1 mark)        |
| (V)            | I in the homologous series.                                         |                                     | (1 mark)        |
| (V)            |                                                                     |                                     |                 |
|                |                                                                     |                                     |                 |
| Stud           |                                                                     |                                     |                 |
| Stud           | the structural formula of the two                                   | monomers below and                  |                 |
| Stud<br>that t | the structural formula of the two ollow.  O H                       | monomers below and                  |                 |
| Stud<br>that t | the structural formula of the two ollow.  O  H                      | monomers below and $H$ $-(CH2)6 -N$ |                 |

(ii) Draw the structural formula to represent the polymer formed. (1 mark)

|                       | (iii)                                                                                                                                                                                                                             | What is the name of the polymer?                              | (1 mark)                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|
|                       |                                                                                                                                                                                                                                   |                                                               |                                        |
|                       | (iv)                                                                                                                                                                                                                              | State the use of this polymer.                                | (1 mark)                               |
|                       |                                                                                                                                                                                                                                   |                                                               | ······································ |
|                       |                                                                                                                                                                                                                                   |                                                               |                                        |
| (c)                   | Two c                                                                                                                                                                                                                             | leansing agents are represented below.                        |                                        |
| l <sub>₩</sub> μμ— co | O⁻Na <sup>+</sup>                                                                                                                                                                                                                 | OSO-3Na+                                                      |                                        |
| Detergent             |                                                                                                                                                                                                                                   | Detergent R                                                   |                                        |
|                       | Select                                                                                                                                                                                                                            | one of the detergents that would be suitable for washing in w | vater                                  |
|                       |                                                                                                                                                                                                                                   |                                                               | (1 mark)                               |
|                       |                                                                                                                                                                                                                                   |                                                               |                                        |
|                       |                                                                                                                                                                                                                                   |                                                               |                                        |
|                       |                                                                                                                                                                                                                                   |                                                               |                                        |
| d).                   | d). A factory produces 63.6 tonnes of anhydrous Na <sub>2</sub> CO <sub>3</sub> on a certain day b process. Calculate the number of tonnes of sodium chloride used on this p day. Assume the plant is working at 100% efficiency. |                                                               |                                        |
|                       | (C = 1)                                                                                                                                                                                                                           | 2, H = 1, Cl = 35.5, Ca = 40, Na = 23)                        | (3 marks)                              |

7. In an experiment to determine the molar heat of neutralization of hydrochloric acid with sodium hydroride, students of KASSU Secondary school reacted 100cm<sup>3</sup> of 1M

| follow<br>Initial<br>Initial<br>Highes | ing res<br>temper<br>temper<br>st temp                                                             | acid with $50\text{cm}^3$ of 2M sodium hydroxide solution. Sults.  rature of acid = $25.0^{\circ}\text{C}$ rature of base = $25.0^{\circ}\text{C}$ perature reached $1 - \text{alkali mixture} = 34.0^{\circ}\text{C}$ | They obtained the                |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| (a)                                    | Defin                                                                                              | e the term molar heat of neutralization.                                                                                                                                                                               | (1 mark)                         |  |  |  |
| (b)                                    | Write an ionic equation for the neutralization reaction between hydroch and sodium hydroxide. (1 r |                                                                                                                                                                                                                        |                                  |  |  |  |
| (c)                                    | Calcu (i)                                                                                          | The amount of heat produced during the reaction. (S.h.c. of solution = 4.2 kJkg <sup>-1</sup> k <sup>-1</sup> )                                                                                                        | (3 marks)                        |  |  |  |
|                                        | (ii)                                                                                               | The molar heat of neutralization of sodium hydroxide.                                                                                                                                                                  | (1 mark)                         |  |  |  |
|                                        | (iii)                                                                                              | Explain why molar heat of neutralization of IM NaOH i of 1M NH <sub>4</sub> OH when reacted with 1M HCl.                                                                                                               | is higher than that<br>(2 marks) |  |  |  |
|                                        |                                                                                                    |                                                                                                                                                                                                                        |                                  |  |  |  |
| (d)                                    | Write                                                                                              | e the thermochemical equation for the reaction.                                                                                                                                                                        | (1 mark)                         |  |  |  |
| (e)                                    | Draw                                                                                               | an energy level diagram for the reaction.                                                                                                                                                                              | (2 marks)                        |  |  |  |

f) Below are the heats of combustion of carbon, hydrogen gas and ethanol.

 $\Delta$ Hc <sub>(carbon)</sub>  $\Delta$ H = -393 kJ/mol

 $\Delta Hc_{(Hydrogen)}$   $\Delta H = -268 \text{ kJ/mol}$ 

 $\Delta$ Hc (Ethanol)  $\Delta$ H = -1368 kJ/mol

Calculate the heat of formation of ethanol. (3 marks)

## ANSWERS: Order a copy of answers from <a href="www.schoolsnetkenya.com/order-e-copy">www.schoolsnetkenya.com/order-e-copy</a> NB> We charge Kshs. 100 ONLY to meet website, e-resource compilation and provision costs