| Name | | Index No | | |---------------|-----|-----------------------|------| | Class | Adm | Candidate's Signature | •••• | | 233/2 | | | | | CHEMISTRY | | | | | PAPER 2 | | | | | JUNE | | | | | (THEORY) | | | | | TIME: 2 HOURS | | | | ## **KABARAK-SACHO-SUNSHINE JET EXAMINATION** **KASSU - 2014** Kenya Certificate of Secondary Education (K.C.S.E) 233/2 CHEMISTRY PAPER 2 (THEORY) TIME: 2 HOURS ## **INSTRUCTIONS** - a) Write your name and the Index Number in the spaces provided above. - b) Answer **ALL** the questions in the spaces provided after each question. - c) Use of Mathematical sets and electronic calculators may be used. - d) All working should be clearly shown. ## **FOR OFFICIAL USE ONLY** | QUESTIONS | EXPECTED SCORE | CANDIDATES SCORE | |-----------|----------------|------------------| | 1 | 08 | | | 2 | 12 | | | 3 | 09 | | | 4 | 11 | | | 5 | 12 | | | 6 | 14 | | | 7 | 14 | | | TOTAL | 80 | | | 1 | a) | The electron arrangement of ions A^{3+} and B^{2-} are 2.8 and 2.8.8 respectively. Write down the electron arrangement of the elements A and B. (2marks) | |---|----|--| | | b) | B | | Element | Atomic number | Boiling point (°C) | |---------|---------------|--------------------| | K | 3 | 1333 | | L | 13 | 2470 | | M | 16 | 445 | | N | 18 | -186 | | P | 19 | 774 | | Р | | 19 | 774 | ł | | |-----------|-----------------|----------------|-----------------|---------------|------------------------------| | h eleme | ent | | | | | | (i) | | room tempera | nture? Explain | | om temperature
(1mark) | | (ii) | Does not f | orm an oxide | ? Explain. | | (1 mark) | |
(iii) | Write dow
M. | n the equation | n for the react | tion between | n elements K ar
(1 mark) | |
(iv) | | | | | formed when answer (1 mar | |
(v) | Select the | most electrop | ositive eleme | nt. Explain | (1 mark) | |
(vi) | Why the b | oiling point o | f element L is | s higher than | n that of elemen
(1 mark) | with excess 0.2M Sulphuric (VI) acid in the presence of a catalyst in a conical flask placed on an electronic balance. | (i) | Write a | an equation for the reaction that took place. | (1mark) | |-----------------------------------|---|--|--| | | | | | | (ii) | | n why there is loss in mass. | (1mark) | | (11) | • | | ` ' | | (iii) | Name t | the catalyst used | | | , , | | • | | | (iv) | (a) | Sketch, on the same axes, the curves obtain | | | | | I the same mass of zinc powder was t | | | | | a a maditi a ma | | | | | conditions. | (1mark) | | | | II no catalyst was used. process, sulphur (IV) oxide is converted to S | (1mark)
Sulphur (VI) oxide in | | the ca | atalytic characteristic $_{(g)}$ + $O_{2(g)}$ What is | II no catalyst was used. process, sulphur (IV) oxide is converted to S namber in which a dynamic chemical equilibrity $2SO_{3 (g)}$; $\Delta H = -97kJmol^{-1}$ s meant by dynamic equilibrium? | (1mark) Sulphur (VI) oxide in orium is reached. (1mark) | | the ca
2SO ₂ | ntalytic ch
(g) + O ₂ (g
What is | II no catalyst was used. process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibration $\Delta S = 2SO_{3 (g)}$, $\Delta H = -97kJmol^{-1}$ | (1mark) Sulphur (VI) oxide in orium is reached. (1mark) | | the ca
2SO ₂ | atalytic character (g) + O _{2 (g)} What is | II no catalyst was used. process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity $\Longrightarrow 2SO_{3 (g)}$; $\Delta H = -97kJmol^{-1}$ s meant by dynamic equilibrium? | (1mark) Sulphur (VI) oxide ir orium is reached. (1mark) | | the ca
2SO ₂ | otalytic character (g) + O _{2 (g)} What is | II no catalyst was used. process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity ≥ 2SO _{3 (g)} ;ΔH = -97kJmol ⁻¹ s meant by dynamic equilibrium? | (1mark) Sulphur (VI) oxide in orium is reached. (1mark) | | the ca
2SO ₂
(i) | what is | II no catalyst was used. process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity ≥ 2SO _{3 (g)} ;ΔH = -97kJmol ⁻¹ s meant by dynamic equilibrium? | (1mark) Sulphur (VI) oxide in orium is reached. (1mark) | | the ca
2SO ₂
(i) | what is | II no catalyst was used. process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity ≥ 2SO _{3 (g)} :ΔH = -97kJmol ⁻¹ s meant by dynamic equilibrium? and explain how each of the following would brium. | (1mark) Sulphur (VI) oxide in orium is reached. (1mark) I affect the position of (2 marks) | | the ca
2SO ₂
(i) | what is | II no catalyst was used. process, sulphur (IV) oxide is converted to Snamber in which a dynamic chemical equilibrity ≥ 2SO _{3 (g)} ;ΔH = -97kJmol ⁻¹ s meant by dynamic equilibrium? and explain how each of the following would rium. crease in temperature. | (1mark) Sulphur (VI) oxide in orium is reached. (1mark) I affect the position of (2 marks) | (2 marks) b) Decrease in pressure. | | (iii) | Equi | librium e | xists between | n chromate and di | ichromate ions as | s shown | |-------|---|--|--|---------------------------------|--|--|---------------| | | 2Cr(| belov | W. | | $O_{7(aq)}^{2-} + H_2O_{(1)}$ | | | | | (Yel | _ | (uq) | | 7(aq) 2 (1) ange) | | | | | (1611 | State | ded to the | lain the obsert
e above mixt | vation made whe | 1 | (2 marks) | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | 3 a). | it an | | | vs the standar | rd reduction poter follow (letter are | not the actual s | ymbols for th | | 3 a). | it an
elem | d answe | er the qu | vs the standar | rd reduction poter
follow (letter are | not the actual signal E^{θ} (Vo. | ymbols for th | | 3 a). | it an elem | d answe | er the quo | vs the standarestions that f | and reduction poter follow (letter are $2F_{(aq)}$ | not the actual system E^{θ} (Vo. +0.54 | ymbols for th | | 3 a). | it an elem | d answe | er the qu | vs the standarestions that f | and reduction potential follow (letter are $\mathbf{2F}_{(\mathbf{aq})}$ $\mathbf{G}_{(\mathbf{s})}$ | not the actual signal E^{θ} (Vo. | ymbols for th | | 3 a). | it an elem $F_{2,(g)}$ G^{2+} H^{2+} | d answe | er the que | vs the standarestions that f | and reduction poter follow (letter are $2F_{(aq)}$ | not the actual since E^{θ} (Vo. +0.54 -0.44 | ymbols for th | | 3 a). | it an elem $F_{2,(g)}$ G^{2+} H^{2+} $2J^{+}$ | d answer and the depth of d | 2 e - 2e | vs the standarestions that f | rd reduction poter follow (letter are $2F_{(aq)}$ $G_{(s)}$ $H_{(s)}$ | not the actual system E^{θ} (Vo. +0.54 -0.44 +0.34 0.00 | ymbols for th | b) The diagram below shows the apparatus that can be used to electrolyse acidified water to obtain hydrogen and oxygen gases. Study it and answer the questions that follow. | i. | Identify the electrode at which oxidation takes place. | (1 mark) | |------|--|-----------| | | | | | ii. | Give a reason why it is necessary to acidify the water. | (1 mark) | | | | | | iii. | Explain why hydrochloric acid is not used to acidify the water. | ` ′ | | | | | | | | | | | ng electrolysis of aqueous copper (II) sulphate 144750 C of electr
Calculate the mass of copper metal that was obtained (Cu=64;1F | • | | | | (2 marks) | | 4. | a) | Describe how a sample of the solution could be tested to fine chloride ions. | d out if it contained (2 marks) | |----|----|--|---------------------------------| | | | | | | | | | | c) b) 20g of potassium chloride were placed in a glass beaker and 40.0cm³ of water were added. The beaker was heated until all the potassium chloride had dissolved and then allowed to cool. When crystals first appear the temperature was noted. An extra 5.0cm³ of water were added and the experiment was repeated. The results of experiment were as shown below. | Experiment | Volume of water (cm ³⁾ | Temperature at which crystals formed (⁰ C) | Solubility in g/100g of water | |------------|-----------------------------------|--|-------------------------------| | 1 | 40 | 77 | - | | 2 | 45 | 56 | 44.5 | | 3 | 50 | 40 | - | | 4 | 55 | 26 | 36.3 | | 5 | 60 | 15 | - | | 6 | 65 | 8 | 30.8 | - I. Calculate the values of solubility of KCl which are missing from the table $(1^{1}/_{2}marks)$ - II. On the grid provided plot the graph of solubility against temperature (X-axis) (3 marks) | (i) | What
water | is the effect of temperature on solubility of potassium chloride ? $ (^1/_2 mark) $ | ¹ / ₂ mark)
 | | |-------|---------------|---|---------------------------------------|--| | (ii) | | the graph | •• | | | | I. | What is the solubility of potassium chloride at 60 ^o C? (1mark) | | | | | II. | At what temperature will solubility be 35g/100g of water? (1mark) | | | | | III. | What is the mass of crystals deposited when the solution is coole from 70^{0} c to 40^{0} C? (2marks) | | | | Belov | w is a si | mplified diagram of the Down's cell used for the manufacture of | | | 5 a) sodium. Study it and answer the questions that follow. | i) | What material is the anode made of? Give a reason | (2 marks) | |----|---|-----------| | | | | | | | | | | | | | | | | What precautions are taken to prevent chlorine and sodium from reii) combining? (1 mark) | | iii) | Write an ionic equation for the reaction in which chlo | orine gas is formed. (1 mark) | | | | | |-----|---|--|--------------------------------|--|--|--|--| b). | In the Downs process above a certain salt is added to lower the melting point of sodium chloride from about 800°c to about 600°c. | | | | | | | | | i). | Name the salt that is added. | (1 mark) | | | | | | | , | | (4 1) | | | | | | | ii). | State why it is necessary to lower the temperature. | (1 mark) | | | | | | c). | Explain why aqueous sodium chloride is not suitable as an electrolyte for the manufacture of sodium in the Downs process. (2 marks) | | | | | | | | | | | | | | | | | d). | Sodiu | m metal reacts with air to form two oxides. Give the form | nulae of the oxides. (1 mark) | | | | | | | | | | | | | | | e). | | space below draw a well labled diagram that can be used by electrolysis. | l to extract zinc
(2 marks) | | | | | 6). Study the structural formula below and answer the questions that follow. I. $CH_3\ CH_2\ COOH$ | (i) | Give the systematic name of each | ch compound. | (1 mark) | |----------------|---|-------------------------------------|-----------------| | | | | | | | | | | | (ii) | Write the molecular formula of | each compound. | | | (iii) | How does the boiling point of I compare to that of II? Explain. | | | | | | | (2 marks | | | | | | | (iv). | A gas J is bubbled into concentre to the mixture then boiled to yie | - | e gas J. (1mark | | | | | | | (**) | Draw the structural formula of t | | | | (v) | I in the homologous series | _ | (1 mark) | | (V) | I in the homologous series. | | (1 mark) | | (V) | | | | | | | | | | Stud | | | | | Stud | the structural formula of the two | monomers below and | | | Stud
that t | the structural formula of the two ollow. O H | monomers below and | | | Stud
that t | the structural formula of the two ollow. O H | monomers below and H $-(CH2)6 -N$ | | (ii) Draw the structural formula to represent the polymer formed. (1 mark) | | (iii) | What is the name of the polymer? | (1 mark) | |-----------------------|---|---|--| | | | | | | | (iv) | State the use of this polymer. | (1 mark) | | | | | ······································ | | | | | | | (c) | Two c | leansing agents are represented below. | | | l _₩ μμ— co | O⁻Na ⁺ | OSO-3Na+ | | | Detergent | | Detergent R | | | | Select | one of the detergents that would be suitable for washing in w | vater | | | | | (1 mark) | | | | | | | | | | | | | | | | | d). | d). A factory produces 63.6 tonnes of anhydrous Na ₂ CO ₃ on a certain day b process. Calculate the number of tonnes of sodium chloride used on this p day. Assume the plant is working at 100% efficiency. | | | | | (C = 1) | 2, H = 1, Cl = 35.5, Ca = 40, Na = 23) | (3 marks) | 7. In an experiment to determine the molar heat of neutralization of hydrochloric acid with sodium hydroride, students of KASSU Secondary school reacted 100cm³ of 1M | follow
Initial
Initial
Highes | ing res
temper
temper
st temp | acid with 50cm^3 of 2M sodium hydroxide solution. Sults. rature of acid = 25.0°C rature of base = 25.0°C perature reached $1 - \text{alkali mixture} = 34.0^{\circ}\text{C}$ | They obtained the | | | | |--|--|--|----------------------------------|--|--|--| | (a) | Defin | e the term molar heat of neutralization. | (1 mark) | | | | | (b) | Write an ionic equation for the neutralization reaction between hydroch and sodium hydroxide. (1 r | | | | | | | (c) | Calcu (i) | The amount of heat produced during the reaction. (S.h.c. of solution = 4.2 kJkg ⁻¹ k ⁻¹) | (3 marks) | | | | | | (ii) | The molar heat of neutralization of sodium hydroxide. | (1 mark) | | | | | | (iii) | Explain why molar heat of neutralization of IM NaOH i of 1M NH ₄ OH when reacted with 1M HCl. | is higher than that
(2 marks) | | | | | | | | | | | | | (d) | Write | e the thermochemical equation for the reaction. | (1 mark) | | | | | (e) | Draw | an energy level diagram for the reaction. | (2 marks) | | | | f) Below are the heats of combustion of carbon, hydrogen gas and ethanol. Δ Hc _(carbon) Δ H = -393 kJ/mol $\Delta Hc_{(Hydrogen)}$ $\Delta H = -268 \text{ kJ/mol}$ Δ Hc (Ethanol) Δ H = -1368 kJ/mol Calculate the heat of formation of ethanol. (3 marks) ## ANSWERS: Order a copy of answers from www.schoolsnetkenya.com/order-e-copy NB> We charge Kshs. 100 ONLY to meet website, e-resource compilation and provision costs