Name:	••••
-------	------

Index no

Candidate's sign

Date:

233/1 CHEMISTRY PAPER 1 JULY/AUGUST 2014 TIME: 2 HOURS

NYATIKE SUB -COUNTY JOINT EVALUATION EXAM

Kenya Certificate of Secondary Education (K.C.S.E.)

233/1 Chemistry Paper 1 2 hours

INSTRUCTIONS TO CANDIDATES:

- Write your **name** and **index number** in the spaces provided above.
- Sign and write the date of examination in the spaces provided above.
- Answer All the questions in the spaces provided below each question.
- Mathematical tables and electronic calculators may be used
- All working **MUST** be clearly shown where necessary.

For Examiner's Use Only

Question	Maximum score	Candidate's score
1-30	80	

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing

(b) Explain why it is not advisable to clean surfaces of cooking vessels made of aluminium using wood –ash solution (2mks)

2. The set-up below was used to prepare and collect gas L, produced by the reaction between water and calcium metal

(a) Name gas K	(1mk)
(b) At the end of the experiments, the solution in the beaker was found t	to have a PH of about 11,
explain	(2mks)

(c) Write a balanced chemical equation for the reaction that occurs	(1mk)

3. The following set-up shows the heating of a mixture of equal amounts of sodium chloride and ammonium chloride

(a) What is s	ubstance K?			(1mk)
(b) What is the	he process by v	which substance K is formed	1?	(1mk)
Differentiate	between the te	erms atomic number and ma	ss number	(2mks)
Study the equ	uilibrium betw — E ₍₂₎	een gases		
(i)Sketch a g	$\overline{}$ raph of the var	iation of the concentration o	of substance F with time,	on the grid below
	Concentration	Time		
(ii) Explain t	ا he shape of the	e curve		(2mks)
Explain why Lead (II) car	very little cart rbonate	oon (IV) Oxide gas is evolve	ed when dilute Sulphuric ((VI) acid is added to (2mks)
A crystal of (two days wit	Copper (II) Sul hout shaking. S	phate was placed in a beake State and explain the observa	er of water. The beaker wa ations that were made	as left standing for (2mks)
Study the in	formation in th	e table below and answer th	e questions that follows	
	Ions	Electron arrangement	t Ionic radius	
	A+	2.8	0.95	

Explain why the ionic radius of

(a) B+ is greater than A+

(1mk)

.....

(b) C	C2+ is smaller than of A+	(2mks)	
(a) S	tate Graham's law of diffusion	(1mk)	
 (b) C	Gas D takes 110 seconds to diffuse through a porous partition. Gas D has a relative m	nolecular	
mass	s of 34. How long will it take for the same amount of ammonia gas to diffuse under it	dentical	
cond	itions? (H=1, N=14)	(2mks)	
Whe	n reacting sulphur (VI) Oxide and Hydrogen Sulphides some traces of water vapour	is require	
for th	ne reaction to occur.		
(a) S	tate the role of water vapour	(1mk)	
(b) V	Vrite an equation for the reaction that occurs	(1mk)	
 (c) Io	lentify the reducing agent in the reaction in (b) above	(1mk)	
	·····		
State	State and explain observation made when Conc. Sulphuric (VI) acid was added to sugar		
crys	tals	(2mks)	
Nam	e the class to which the following cleansing agents belongs		
(i) R	-COO ⁻ Na ⁺ A	(½ mk)	
(ii) F	$B = 0$ $O-SO_3 Na^+$ B	(½ mk)	
(iii) '	Which cleansing agent is suitable for use in hard water?	(½ mk)	
(iv) v	Which cleansing agent above s not environmentally friendly?	(½ mk)	

E-resources available online at <u>www.schoolsnetkenya.com</u> / Email: <u>infosnkenya@gmail.com</u> / Tel.: +254202319748

- (i) Nitrogen (I) Oxide supports combustion of burning charcoal. Write an equation to show this reaction (1mk)
 (ii) Ammonium nitrate can be heated to give off Nitrogen (I) oxide. However a mixture of NH₄Cl and NaNO3 is preferred. Explain (1mk)
 (iii) State the physical test of Nitrogen (I) Oxide (1mk)
- 14. The set-up below was used to prepare dry sample of hydrogen Sulphide gas

	(a)(i) Complete the diagram to show how the gas was collected	(2mks)
	(ii) Identify the following	
	I: Solid H	(1mk)
	II.Solid J	(1mk)
	(b) Write an equation for the reaction that occurred in the flask between solid H and dilu	ute
	hydrochloric acid	(1mk)
15.	(a) Distinguish between nuclear fusion and fission	(2mks)
	(b) Complete the nuclear equation below	
	230	
	E-resources available online at <u>www.schoolsnetkenya.com</u> / Email: <u>infosnkenya@gmail.com</u> / Tel.: +254202319748	

$_{90}$ Th $\longrightarrow _{91}^{230}$ Pa +	
(c) Give one application of radioactivity in agriculture	(1mk)
The formula given below represents a portion of a polymer $ \begin{cases} H & H & H & H \\ I & I & I & I \\ C & - & C & - & C \\ I & I & I & I \\ \hline 0 & H & \hline 0 & H \end{cases} $	
(a) Give the name of the Polymer	(1mk)
(b) Draw the structure of the monomer used to manufacture the Polymer	(1mk)
Hydrogen chloride gas can be used to carry out fountain experiment. State the property chloride that make it suitable for this experiment	of hydroge (1mk)
of water(C=12.0,H=1.0, O=16.0) Density of water is $1g/cm3$, specific heat capacity of $42KjKg^{-1}K^{-1}$ (a) Write the equation for the combustion of ethanol	water is (1mk)
(b) Determine the molar heat of combustion of ethanol	(2mks)
Iron is extracted from its ore by blast furnace form its ore by blast furnace process. (a) Name one ore from which iron is extracted	(1mk)
(b) One of the impurities in iron is removed in the form of Calcium silicate. Write equ reaction in which calcium silicate is produced	ations for th (2mks)

21. (a) Starting with solid Magnesium Oxide, describe how a solid sample of Magnesium hydroxide an be prepared (2mks)

	(b) Give one use of Magnesium hydroxide	(1mk)
2.	An oxide of element F has the following F2O5. Determine the oxidation state of F in the	e compound (1mk)
3.	A dynamie equilibrium is established when hydrogen and chlorine reacts as shown belo	w
	$Cl_{2(g)} + H_2 $ 2HCl _(g)	
	(a) What is meant by the term dynamic equilibrium?	(1mk)
	(b) State and explain the effect of increasing pressure on the position of the equilibrium in (a) above	shown (2mks)
ŀ.	An element X has a relative atomic mass of 44. When a current of 0.5 A was passed through molten chloride of X for 32 minutes and 10 seconds, 0.22g of X were deposited at the c Determine the charge on an ion of X (1F=96,500c)	ough the athode (3mks)
5	(a) Differentiate between catalytic and thermal cracking of long chain organic compoun	ds(2mks)

(a) 2 more many the and meeting of long ename organic	compounds(2mms)
(b) State the disadvantage of C.F.C based compounds	(1mk)

26. The figure below shows a simple extraction process of Sulphur

	(a) Give the name of the process shown in the diagram above	(1mk)
	(b) What is the use of the superheated hot water?	(1mk)
	(c) State two physical properties of Sulphur that make it possible to be extracted using w	ater(2mks)
27.	(a) Define molar latent heat of vaporization of a substance	(1mk)
	(b) The Molar latent heat of vaporization of water at 100°C is 41.1kJ/mol. Calculate the l change when 1.0g of water at 100°C is converted into vapour at 100°C (H=1, O=16)	neat (2mks)

28. Metals **Q** and **T** had their half-cells connected to a Zinc half-cell and the following reduction potentials were obtained fro each metal

Metal half-cell	Reduction potential (volts)
$Q^{2+}_{(aq)}Q(s)$	-1.37v
T+(aq)/T(s)	-0.83v

(a) What name is given to the Zinc half-cell in this circumstances, and state its reduction

Potential	(1mk)
(b) Metals Q and T were connected to form an electrochemical full cell(i) Write the equations for the half-cell reactions that occur at the Q and T electrodes	(1mk)
I. At electrode Q:	
E-resources available online at <u>www.schoolsnetkenya.com</u> / Email: <u>infosnkenya@gmail.com</u> / Tel.: +254202319748	

II. At electrode T:	
(ii) Calculate the e.m.f of the electrochemical full cell in b(i) above	(1mk)

ANSWERS:

Order a copy of answers from <u>www.schoolsnetkenya.com/order-e-copy</u> NB> We charge Kshs. 100 ONLY to meet website, e-resource compilation and provision costs